Design of 2x2 microstrip patch antenna array fed by SIW for 24 GHz radar application

Belfast, United Kingdom /8th MC Meeting and Workshop of COST IC0803

Tomáš Mikulášek, Apostolos Georgiadis, Ana Collado, Jaroslav Láčík

May 17, 2012

Presentation outline

- Motivation
- Topology of the feeding network
- Parts of the feeding network
- Antenna array configuration
- Experimental results
- Work in progress
- Conclusion

May 17, 2012

Motivation

- MPA+SIW
- Array of 2x2 patches
- Radar application at 24 GHz
- The antenna consists of two dielectric layers:
 - SIW layer, Patch layer
- BW = 7.7 %, G = 8 dBi

T. Mikulasek, J. Lacik. "Microstrip Patch Antenna Fed by Substrate Integrated Waveguide", in *Proceedings of the International Conference on Electromagnetics in Advanced Applications ICEAA*. 2011, p. 1209–1212.

Fig. 1: Single antenna configuration.

Fig. 2: Reflection coefficient of single antenna.

May 17, 2012

Topology of the feeding network

• Common feeding network topology

Parts of the feeding network (1/4)

- **Coax-GCPW-SIW** transition •
 - Back-to-back configuration
 - Measurement on the test fixture

Fig. 6: S-parameters of coax-GCPW-SIW transition.

Parts of the feeding network (2/4)

 T-junction power divider $- s_{11} < -31 \text{ dB} (23-25 \text{ GHz})$

Parts of the feeding network (3/4)

• Y-junction power divider $- s_{11} < -29 \text{ dB} (23-25 \text{ GHz})$

Parts of the feeding network (4/4)

DEPARTMENT OF RADIO ELECTRONICS

Antenna array configuration

May 17, 2012

Experimental results

- Impedance bandwidth = 14.9 %
- Higher dielectric losses

Fig. 14: Reflection coefficient of antenna array.

(a) Top view

(b) Bottom view Fig. 15: Prototype of antenna array.

May 17, 2012

Radiation patterns

• Simulated gain = 11.8 dBi

Ansoft HFSS

Measurement

0

Theta (°)

(a) E-plane

45

90

135

180

• Measured gain = 7.3 dBi

Fig. 17: Radiation patterns of antenna array.

May 17, 2012

-135

0

-5

-10

-15

-20

-25 -30

-35

-40

-45

-50

-180

Normalized Gain (dB)

-90

-45

Work in progress

• 2.92 mm connector

Fig. 20: Radiation patterns of antenna with coax-SIW transition.

Conclusion

- The configuration of the designed antenna array and its simulated and measured results were presented.
- The measured impedance bandwidth of the fabricated antenna array is wider due to higher dielectric losses in the dielectic substrates.
- Good agreement of the simulated and measured radiation patterns is obtained.
- Fabrication of the improved antenna array and its validation by the measurements.

Acknowledgements

Thank you for your attention

Presented work was financially supported by the research program no. OC09016 (COST IC0803) and by the project no. CZ.1.07/2.3.00/20.0007 (WICOMT).

