Antennas for the THz Region

K Kamil Pítra, 3nd year of PhD

- Supervisor: Prof. Zbynek Raida
- Brno University of Technology

Presentation schedule

- Introduction

CP THz antenna with Si lens
\square CP THz antenna with metamaterials
\square CP THz antenna with high resistivity and metamaterials
Conclusions

Introduction

THz applications:

- Biology
- Medicine
- Imaging
- Material spectroscopy
- Security

urel@feec.vutbr.cz

Introduction

- Classical approach
- Silicon Lens
- Linear polarization

■ Narrowband and wideband applications

DREL

My approach

- Metamaterial Lens
- Circular polarization
- Complete planar structure

CP THz Antenna with Si Lens

CP THz Antenna with Si Lens

- Photomixer and dual slot antennas create a THz source
- RF choke for blocking DC biasing.
- The patterns of E-plane and H-plane are symmetric because the RF filter is symmetric.

CP THz Antenna with Si Lens

Test capacitor: $\operatorname{Wf}=1 \mu \mathrm{~m}, \mathrm{Lf}=9 \mu \mathrm{~m}, \mathrm{Wg}=1 \mu \mathrm{~m}, N=6$.

Comparison of the obtained results

Approach ($\boldsymbol{f}=\mathbf{1}$ THz)	Value of the capacity [fF]
Conformal Mapping [4]	3.024
Simple Approximation	7.912
CST MWS (frequency solver)	3.046
Published results [3]	3.061

CP THz antenna with Si lens

- The resonant frequency of the square patch can be split into two degenerated resonant modes $T M 10$ and $T M 01$ with 90° phase difference.

DREL

Results \#1

Frequency responses of return loss and axial ratio of the simulated antenna

Parameters $\boldsymbol{f}=\mathbf{1} \mathbf{T H z}$	Value
Main Lobe Magnitude	5.27 dBi
Side Lobe Level in the YZ Plane	-6.3 dB
Side Lobe Level in the XZ Plane	-8.3 dB
Angular Width (3 dB) in the XZ Plane	97.3 deg
Angular Width (3 dB) in the YZ Plane	123.6 deg
Radiation Efficiency	61 \%

Results \#2

CP THz Antenna with Metamaterials (Full concept)

CP THz Antenna with Metamaterials

Region 1: Feeding line and GaAs photomixer
Region 2: CP antenna fed by cross slot

Multi-Layer structure

Optical beating of two laser sources

Region 3: EBG like mushroom structure
Region 4: EBG Superstrate

Metamaterials: Superstrate at 1 THz

- Superstrates are able to focus the electromagnetic energy, thus they can be used for gain improvement of the antennas.
- The basic principle of superstrate corresponds to the principle of FabryPerot resonators.
- Radiation source is placed between the ground plane and superstrate layer and forming together a resonant cavity.
■ Superstrate can be used like replacement of the conventional lens.

Principle of the Febry-Perot resonator

Results \#1 at 1 THz

Results \#2 at 1 THz

Results \#3 at 1 THz

Drectivy Abs (Phi=90)

Drectivty Abs (Phi=0)

Superstrate cover $G=17.6 \mathrm{dBi}$

Teoretical value $G=20.9 \mathrm{dBi}$
improvement of Gain

$$
G=13.07 \mathrm{~dB}
$$

Circular polarization is not affected by superstate

Metamaterials: Mushroom structure

- Mushroom structures are able to reduce surface wave propagation.
- Mushroom structures can be used for mutual isolation improvement of the antennas in the matrix.
- Mushroom structures are able to improve axial ratio of the antenna.

Surface wave propagation inside the gounded dielectric plate

DREL

Metamaterials: Mushroom structure

Equivalent circuit model of the unit cell.

DREL

Results \#1 at 10 GHz

Results \#2

Results \#3: Comparison at 10 GHz

- CPA with EBG structure around radiator (design for $\varepsilon_{\mathrm{R}}=2.94, \mathrm{~h}=0.7874 \mathrm{~mm}$)
- CPA with different dimensions of the ground plane
- Results with mushroom structure

No EBG: ground plane 53x53mm

EBG: ground plane $53 \times 53 \mathrm{~mm}$

Ground plane $15 \times 15 \mathrm{~mm}$

Results \#4: Comparison at 10 GHz

- Frequency responses of return loss

DREL

Results \#5: Comparison at 10 GHz

- Radiation patterns at 10 GHz

Farfield Directivity Abs (Phi=0)

Theta / Degree vs. dBi

- EBG
...... Ground_15×15
- - - Ground_ 53×53
$\begin{gathered}y \\ y=x\end{gathered}=x$

Farfield Directivity Abs (Phi=90)

Theta / Degree vs. dBi
YZ Plane

Results \#6: Comparison at 10 GHz

DREL

Results \#7: Comparison at 10 GHz

■ Obtained results

Antenna	SLL in XZ Plane	SLL inYZ Plane	Gain
With EBG	$\mathbf{- 1 9 . 9 ~ d B}$	$\mathbf{- 1 9 . 9 ~ d B}$	$\mathbf{6 . 9 3} \mathbf{~ d B}$
Ground $53 \times 53 \mathrm{~mm}$	-13.3 dB	-13.3 dB	3.18 dB
Ground $15 \times 15 \mathrm{~mm}$	$\mathbf{- 1 3 . 5} \mathbf{~ d B}$	$\mathbf{- 1 3 . 5 ~ d B}$	$\mathbf{4 . 5 3} \mathbf{~ d B}$

1D Results\S-Parameters\Axial_ratio

Results \#8: Comparison at 10 GHz

Normalized electric field distribution over the antenna

CP THz antenna with high resistivity and metamaterials

THz Antenna with High Resistance

- High output power
- High input resistance

Insang W., Haewook H., Ikmo P., Hanjo L. "Four-leaf clover-shaped antenna on an extended hemispherical lens for a high-outputpower THz photomixer" 35th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz), 2010

DREL

Results \#1

Farfield Directivity Abs (Phi=0)

Theta / Degree vs. dBi

Farfield Directivity Abs (Phi=90)

Theta / Degree vs. dBi

DREL

Results \#2

Antenna	SLL in XZ Plane	SLL in YZ Plane	Gain
Single antenna	-6.5 dB	-6.4 dB	15.5 dB
Antenna with superstrate	-4 dB	-6.4 dB	5.8 dB

Gain improvement $=9.8 \mathrm{~dB}$
Farfield Directivity Abs (Phi=0)
Farfield Directivity Abs (Phi=90)

Theta / Degree vs. dBi

Theta / Degree vs. dBi

DREL

THz metamaterials: Design of the mushroom

Dimensions of the one Cell:
$D=27.38 \mu \mathrm{~m}, \mathrm{P}=19.38 \mu \mathrm{~m}$,
$\mathrm{R}=4 \mu \mathrm{~m}, \mathrm{G}=4 \mu \mathrm{~m}$
GaAs with $\mathrm{h}=10 \mu \mathrm{~m}, \mathrm{t}$ AU $=200 \mathrm{~nm}$,
t - Pt $=40 \mathrm{~nm}, \mathrm{t}$ - $\mathrm{Ti}=30 \mathrm{~nm}$

D ispersion diagram

Results \#1

950 GHz :TM waves in propagation, TE waves in cutoff
$\mathbf{1 0 0 0} \mathbf{~ G H z}$: both the TM and TE waves in cut off (waves do not propagate)
$\mathbf{1 2 0 0} \mathbf{~ G H z : ~ (T M ~ w a v e s ~ i n ~ c u t o f f , ~ T E ~ w a v e s ~ i n ~ p r o p a g a t i o n ~}$
Confirm the results of the dispersion analysis.

DREL

Superstrate: Reduction of the cavity

$$
h=\frac{\varphi_{1}+\varphi_{2}}{\pi} \frac{\lambda}{4}+N \frac{\lambda}{2} \quad N=0,1,2, \ldots
$$

PEC: $\varphi=180$ Deg AMC/EBG: $\varphi \neq 180$ Deg

$$
N=1
$$

$$
N=0,1
$$

$$
h=\lambda / 2
$$

$$
\mathrm{h}=\lambda / 120
$$

Dimmensions: V1 » V2

DREL

Conclusion

■ Disadvantages of my proposal: Losses, Efficiency, Complicated design, Production.

■Advantages of my proposal: Complete planar structure, Circular polarization, High gain, reduced mutual coupling, wide axial ratio band.

Thank you for your attention

I would like to thank prof. Hartnagel for his great help with my work.

The stay was supported by the WICOMT program CZ.1.07/2.3.00/20.0007

DREL

Contact

Kamil Pítra, Zbynek Raida,

xpitra01@stud.feec.vutbr.cz raida@feec.vutbr.cz

Dept. of Radio Electronics, Brno University of Technology
Purkynova 118, 61200 Brno, Czechia
Tel: +420 541149114
Fax: +420 541149244

DREL

Superstrate: Boundary conditions

EBG: Boundary conditions

DREL

