

Antennas for the THz Region

Kamil Pítra, 3nd year of PhD
Supervisor: Prof. Zbynek Raida
Brno University of Technology

www.urel.feec.vutbr.cz

Presentation schedule

□ Introduction

- □ CP THz antenna with Si lens
- □ CP THz antenna with metamaterials
- □ CP THz antenna with high resistivity and metamaterials

Conclusions

Introduction

300GHz - 10THz					
millimetre/ microwave	THz Gap	infrared	visible	Ultra- violet	x-ray
10 ¹⁰ Hz	10 ¹² Hz	1014	Hz	10 ¹⁶ Hz	10 ¹⁸ Hz
30cm	300µm	3μ	Im	30nm	0.3nm

THz applications:

- Biology
- Medicine
- Imaging
- Material spectroscopy
- Security

urel@feec.vutbr.cz

Introduction

- My approach
 - Metamaterial Lens
 - Circular polarization
 - Complete planar structure

CP THz Antenna with Si Lens

Parameters	Value [µm]
L	55.00
L_slot_1	20.83
L_slot_2	17.8
W_slot	1.00
S _{CPW}	1.00
G _{CPW}	6.00
t	0.10

CP THz Antenna with Si Lens

- Photomixer and dual slot antennas create a THz source
- RF choke for blocking DC biasing.
- The patterns of E-plane and H-plane are symmetric because the RF filter is symmetric.

CP THz Antenna with Si Lens

Test capacitor: $Wf = 1\mu m$, $Lf = 9 \mu m$, $Wg = 1 \mu m$, N = 6.

Comparison of the obtained results

Approach ($f = 1$ THz)	Value of the capacity [fF]
Conformal Mapping [4]	3.024
Simple Approximation	7.912
CST MWS (frequency solver)	3.046
Published results [3]	3.061

CP THz antenna with Si lens

The resonant frequency of the square patch can be split into two degenerated resonant modes TM 10 and TM 01 with 90° phase difference.

Results #1

Frequency responses of return loss and axial ratio of the simulated antenna

Results #2

CP THz Antenna with Metamaterials (Full concept)

CP THz Antenna with Metamaterials

Region 1: Feeding line and GaAs photomixer Region 2: CP antenna fed by cross slot Region 3: EBG like mushroom structure Region 4: EBG Superstrate

Metamaterials: Superstrate at 1 THz

- Superstrates are able to focus the electromagnetic energy, thus they can be used for gain improvement of the antennas.
- The basic principle of superstrate corresponds to the principle of Fabry-Perot resonators.
- Radiation source is placed between the ground plane and superstrate layer and forming together a resonant cavity.
- Superstrate can be used like replacement of the conventional lens.

Principle of the Febry-Perot resonator

Results #1 at 1 THz

Results #2 at 1 THz

Results #3 at 1 THz

Directivity Abs (Phi=90) Directivity Abs (Phi=0) •••• 0_P •••• 90_P+EBG --• 0_P - 0_P+EBG Single antenna G = 5.26 dBiSuperstrate cover G = 17.6 dBië ē **Teoretical value** *G* = 20.9 dBi -10 -15 -15 improvement of Gain -200 -150 -100 -50 100 150 200 200 -200 -150 100 150 -100 -50 50 0 Theta / Degree Theta / Degree Radiation patterns phi = 0° , 90° G = 13.07 dB

Circular polarization is not affected by superstate

DREL DEPARTMENT OF RADIO ELECTRONICS

urel@feec.vutbr.cz

Metamaterials: Mushroom structure

- Mushroom structures are able to reduce surface wave propagation.
- Mushroom structures can be used for mutual isolation improvement of the antennas in the matrix.
- Mushroom structures are able to improve axial ratio of the antenna.

Surface wave propagation inside the gounded dielectric plate

Metamaterials: Mushroom structure

Equivalent circuit model of the unit cell.

urel@feec.vutbr.cz

Results #1 at 10 GHz

urel@feec.vutbr.cz

Results #2

TM (normalized electric field intensity)

TE (normalized magnetic field intensity)

8 GHz :TM waves in propagation, TE waves in cutoff
10 GHz: both the TM and TE waves in cut off (waves do not propagate)
12 GHz: (TM waves in cutoff, TE waves in propagation
Confirm the results of the dispersion analysis.

Results #3: Comparison at 10 GHz

- CPA with EBG structure around radiator (design for $\varepsilon_R = 2.94$, h = 0.7874 mm)
- CPA with different dimensions of the ground plane
- Results with mushroom structure

No EBG: ground plane 53x53mm

EBG: ground plane 53x53mm

Ground plane 15x15mm

Results #4: Comparison at 10 GHz

Frequency responses of return loss

Results #5: Comparison at 10 GHz

EBG

Ground_15x15

Ground_53x53

Radiation patterns at 10 GHz

Farfield Directivity Abs (Phi=0)

Theta / Degree vs. dBi

Results #6: Comparison at 10 GHz

Results #7: Comparison at 10 GHz

Obtained results

Antenna	SLL in XZ Plane	SLL inYZ Plane	Gain
With EBG	-19.9 dB	-19.9 dB	6.93 dB
Ground 53x53 mm	-13.3 dB	-13.3 dB	3.18 dB
Ground 15x15 mm	-13.5 dB	-13.5 dB	4.53 dB

Results #8: Comparison at 10 GHz

Normalized electric field distribution over the antenna

CP THz antenna with high resistivity and metamaterials

THz Antenna with High Resistance

Insang W., Haewook H., Ikmo P., Hanjo L. "Four-leaf clover-shaped antenna on an extended hemispherical lens for a high-outputpower THz photomixer" 35th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz), 2010

Results #1

DREL DEPARTMENT OF RADIO ELECTRONICS

Results #2

Antenna	SLL in XZ Plane	SLL in YZ Plane	Gain
Single antenna	-6.5 dB	-6.4 dB	15.5 dB
Antenna with superstrate	-4 dB	-6.4 dB	5.8 dB

Gain improvement = 9.8 dB

Farfield Directivity Abs (Phi=0)

Farfield Directivity Abs (Phi=90)

- Phi=90_Single

Phi=90_Superstrate

THz metamaterials: Design of the mushroom

Dimensions of the one Cell: D = 27.38 μ m, P = 19.38 μ m, R = 4 μ m, G = 4 μ m GaAs with h = 10 μ m, t_AU = 200 nm, t_Pt = 40 nm, t_Ti = 30 nm

Results #1

950 GHz :TM waves in propagation, TE waves in cutoff
 1000 GHz: both the TM and TE waves in cut off (waves do not propagate)
 1200 GHz: (TM waves in cutoff, TE waves in propagation
 Confirm the results of the dispersion analysis.

Superstrate: Reduction of the cavity

Dimmensions: V1 » V2

Disadvantages of my proposal: Losses, Efficiency, Complicated design, Production.

Advantages of my proposal:

Complete planar structure, Circular polarization, High gain, reduced mutual coupling, wide axial ratio band.

Thank you for your attention

I would like to thank prof. Hartnagel for his great help with my work.

The stay was supported by the WICOMT program CZ.1.07/2.3.00/20.0007

Contact

Kamil Pítra, Zbynek Raida,

Dept. of Radio Electronics, Brno University of Technology

Purkynova 118, 612 00 Brno, Czechia

Tel: +420 541 149 114

Fax: +420 541 149 244

Superstrate: Boundary conditions

EBG: Boundary conditions

Y