50W SSPA 10 GHz

http://www.urel.feec.vutbr.cz/esl/files/EME/EME.htm

Gajów, June 9-11, 2017

Outline

1. Why such high power? And why SSPA ?
2. New technology
3. TGA 2312FL and similar MMIC
4. Construction of the PA end stage
5. Driver
6. Supply and control circuits

OK2AQ $\mathrm{d} 1=1,8 \mathrm{~m}$ A1 $=2,5 \mathrm{~m}^{2}$ G1 $=43,6 \mathrm{dBi}$
EiRP1 $=56,6 \mathrm{dBi}(\mathrm{W})$

$$
=457 \mathrm{~kW}
$$

S2/N
VK7MO

$\mathrm{d} 2=0,77 \mathrm{~m}$
$\mathrm{A} 2=0,5 \mathrm{~m}^{2}$
G2 $=36,2 \mathrm{dBi}$
$\mathrm{EiRP} 2=53,2 \mathrm{dBi}(\mathrm{W})$ $=209 \mathrm{~kW}$

$$
\frac{S_{2}}{S_{1}}=\frac{P_{2}}{P_{1}}=>10 \log \frac{50}{20}=4 \mathrm{~dB}
$$

$$
\mathrm{S} 1 / \mathrm{N}=\mathrm{S} 2 / \mathrm{N}-4 \mathrm{~dB}
$$

GaAs FET-12 V, X A η ~ 25%

SSPA

TWT High voltage in outdoor environment

GaN FET - $24 \mathrm{~V},<\mathrm{X} / 2 \mathrm{~A}$ η ~ 40%
Higher gain,
Better thermal stability, MMIC

90 Watt Discrete Power GaN on SiC HEMT

Key Features

Frequency Range: DC - 18 GHz

- 49.6 dBm Nominal Psat at 3 GHz
- 52% Maximum PAE
- 17.5 dB Nominal Power Gain
- Bias: $\mathrm{Vd}=28-32 \mathrm{~V}, \| \mathrm{dq}=2 \mathrm{~A}, \mathrm{Vg}=-3.6 \mathrm{~V}$ Typical
- Technology. 0.25 um Power GaN on SiC
- Chip Dimensions: $0.82 \times 4.56 \times 0.10 \mathrm{~mm}$

Gajów, June 9-11, 2017

now TriQuint + RFMD = Qorvo

$\begin{aligned} & \text { Frequency } \\ & (\mathrm{GHz}) \end{aligned}$	Power (dBm)	Gain (dB)	NF (dB)	$\begin{aligned} & \text { PAE } \\ & \text { (\%) } \end{aligned}$	Voltage (V)	$\begin{aligned} & \mathrm{IQ} \\ & (\mathrm{~mA}) \end{aligned}$
8 to 11	43.5	25		>25	14	3,600

Product Features

- Frequency range: 8-11 GHz
- Saturated output power: 43.5 dBm
- Small signal gain: 25 dB
- Bias: $\mathrm{Vd}=14 \mathrm{~V}$, Idq $=3.6 \mathrm{~A}, \mathrm{Vg}=-0.6 \mathrm{~V}$ typical

Gajów, June 9-11, 2017

Product Features

- Frequency Range: $9-10 \mathrm{GHz}$
- $\mathrm{P}_{\text {SAT }}: 48 \mathrm{dBm}$
- PAE: 38%
- Small Signal Gain: 13 dB
- Bias: $\mathrm{V}_{\mathrm{D}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=2.4 \mathrm{~A}, \mathrm{~V}_{\mathrm{G}}=-2.6 \mathrm{~V}$ Typical
- Pulsed: $P W=100 u s, D C=10 \%$
- Integrated Thermistor Temperature Monitor
- Package Dimensions: $17.4 \times 24.0 \times 3.9 \mathrm{~mm}$

Functional Block Diagram

Electrical Specifications

Test conditions unless otherwise noted: $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{D}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=2400 \mathrm{~mA}$, Pulsed: $\mathrm{PW}=100 \mathrm{us}, \mathrm{DC}=10 \%, \mathrm{~V}_{\mathrm{G}}=-2.6 \mathrm{~V}$

Parameter	Min	Mypical	Max	Units
Operational Frequency Range	9			dB
Small Signal Gain		13	dB	
Input Return Loss		15		dB
Output Return Loss		14		dBm
Output Power at Saturation (Pin $=38 \mathrm{dBm})$		48		$\%$
Power-Added Efficiency (Pin $=38 \mathrm{dBm})$		38		dBm
Output TOI		49		$\mathrm{~dB} /{ }^{\circ} \mathrm{C}$
Gain Temperature Coefficient	-0.02	$\mathrm{dBm} /{ }^{\circ} \mathrm{C}$		
Power Temperature Coefficient		-0.001	$\mathrm{dBm} /{ }^{\circ} \mathrm{C}$	
TOI Temperature Coefficient	-0.001			

ACKNOWLEDGEMENT

THANKS to Dominique HB9BBD and Eddy ON7UN for help with TGA2312FL provision

THANKS to Charlie G3WDG for help and support with TGA2312FL bearing and PCB

Substrate

Top dielectric material is RO4350 0.020 inch thickness with 0.5 oz . copper.

With 400320 mil predicted rise above ambient is 71 C and on 6035 HTC it is only 25 C

0.635 mm Rogers 3210

Gajów, June 9-11, 2017

This has been seen on a number of Gigalane connectors now, on several different amplifiers with output powers of $50-90 \mathrm{~W}$ at 10 GHz . Usually both plugs are similarly affected. Hot smells have also been observed with the connector under power. Connectors also run hot to the touch.

Gajów, June 9-11, 2017

Indium Foil

Gajów, June 9-11, 2017

Gajów, June 9-11, 2017

AMSR1-7812-NZ

Gajów, June 9-11, 2017

Gajów, June 9-11, 2017

8.5 dBm

$+30.6 \mathrm{dBm}=39.1 \mathrm{dBm} \Rightarrow 8.1 \mathrm{~W}$
(Input $2 \mathrm{~W}, \mathrm{I}_{\mathrm{dq}}=3 \mathrm{~A}$)

Gajów, June 9-11, 2017

Gajów, June 9-11, 2017

$6.6 \mathrm{dBm}+30.6 \mathrm{dBm}=37.2 \mathrm{dBm} \Rightarrow 5.2 \mathrm{~W}$

 (Input $1,4 \mathrm{~W}, \mathrm{I}_{\mathrm{dq}}=1 \mathrm{~A}$)Gajów, June 9-11, 2017

Gajów, June 9-11, 2017

Gajów, June 9-11, 2017

Gajów, June 9-11, 2017

PA cooling design

Thermal and Reliability Information

Parameter	Test Conditions	Value	Units
Thermal Resistance, θ_{Jc} (Note 1)	Tbaseplate $=85^{\circ} \mathrm{C}$	0.85	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Channel Temperature, $\mathrm{T}_{\text {CH }}$ (Without RF Drive)	$\begin{aligned} & \text { Tbaseplate }=85^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{D}}=\mathbf{2 4} \mathrm{V}, \\ & \mathrm{l}_{\mathrm{DQ}}=2400 \mathrm{~mA}, \mathrm{P}_{\text {DISs }} \mathrm{D8W}, \\ & \text { Pulsed: } \mathrm{PW}=100 \mathrm{us}, \mathrm{DC}=10 \% \end{aligned}$	135	${ }^{\circ} \mathrm{C}$
Median Lifetime, $\mathrm{T}_{\text {M }}$ (Without RF Drive)		$9.75 \times 10^{\wedge} 10$	Hrs
Channel Temperature, T_{CH} (Under RF Drive)	Tbaseplate $=85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{D}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}$ Drive $=$ $6360 \mathrm{~mA}, \mathrm{P}_{\text {OUt }}=48 \mathrm{dBm}, \mathrm{P}_{\text {DISs }}=87 \mathrm{~W}$, Pulsed: PW = 100us, DC = 10\%	158	${ }^{\circ} \mathrm{C}$
Median Lifetime, T_{M} (Under RF Drive)		$7.38 \times 10^{\wedge} 9$	Hrs
Channel Temperature, T_{CH} (Under RF Drive)	Tbaseplate $=85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{D}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D} \text { Drive }}=$ 6670 mA, Pout $=48.8 \mathrm{dBm}, \mathrm{P}_{\text {DISS }}=124$ W, Pulsed: $P W=100$ us, $D C=10 \%$	190	${ }^{\circ} \mathrm{C}$
Median Lifetime, T_{M} (Under RF Drive)		$3.12 \times 10^{\wedge} 8$	Hrs

Notes: (1) Thermal resistance measured at back of the package.
For $\mathbf{D C}=100 \%$ is Θ_{Jc} is 2 times higher - it is $1.7^{\circ} \mathrm{C} / \mathrm{W}$. Dissipated heat is $5 \mathrm{~A}^{*} 24 \mathrm{~V}+8 \mathrm{~W}-$ $-52 \mathrm{~W}=76 \mathrm{~W} . \mathrm{T}_{\mathrm{CH}}=50^{\circ} \mathrm{C}+27.5^{\circ} \mathrm{C}+76 \mathrm{~W} * 1.7^{\circ} \mathrm{C} / \mathrm{W}=207^{\circ} \mathrm{C}->$ lifetime $>5 \mathrm{E}+06$ hours

Gajów, June 9-11, 2017

Driver 8W (C)

For $\mathbf{D C}=\mathbf{5 0 \%}$ is $\Theta_{\mathrm{JC}}=1.7^{\circ} \mathrm{C} / \mathrm{W}$. Dissipated heat is $\left(5 \mathrm{~A}^{*} 24 \mathrm{~V}+8 \mathrm{~W}-52 \mathrm{~W}\right) / 2=38 \mathrm{~W}$. $\mathrm{T}_{\mathrm{CH}}=50^{\circ} \mathrm{C}+13.7^{\circ} \mathrm{C}+38 \mathrm{~W} * 1.7^{\circ} \mathrm{C} / \mathrm{W}=129^{\circ} \mathrm{C}->$ lifetime $>1 \mathrm{E}+10$ hodin

$$
\Theta_{\mathrm{H}}=1.4^{\circ} \mathrm{C} / \mathrm{W}=>0.24^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{~V}) \quad \Delta \mathrm{TH}=0.24^{\circ} \mathrm{C} / \mathrm{W}^{*}\left(1.6 \mathrm{~A}^{*} 24 \mathrm{~V}+76 \mathrm{~W}\right) / 2=13.7^{\circ} \mathrm{C}
$$

Driver 5W (A)

For $\mathrm{DC}=\mathbf{5 0 \%}$ is $\Theta_{\mathrm{JC}}=1.7^{\circ} \mathrm{C} / \mathrm{W}$. Dissipated heat is $\left(4.3 \mathrm{~A}^{*} 24 \mathrm{~V}+5 \mathrm{~W}-42 \mathrm{~W}\right)=66 \mathrm{~W}$.
$\mathrm{T}_{\mathrm{CH}}=50^{\circ} \mathrm{C}+19.3^{\circ} \mathrm{C}+66 \mathrm{~W}{ }^{*} 1.7^{\circ} \mathrm{C} / \mathrm{W}=182^{\circ} \mathrm{C}->$ lifetime $>5 \mathrm{E}+07$ hodin

$$
\Theta_{\mathrm{H}}=1.4^{\circ} \mathrm{C} / \mathrm{W}=>0.24^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{~V}) \quad \Delta \mathrm{TH}=0.24^{\circ} \mathrm{C} / \mathrm{W}^{*}\left(0.6 \mathrm{~A}^{*} 24 \mathrm{~V}+66 \mathrm{~W}\right)=19.3^{\circ} \mathrm{C}
$$

Overheating protection adjustment

Gajów, June 9-11, 2017

$16.6 \mathrm{dBm}+30.6 \mathrm{dBm}=47.2 \mathrm{dBm} \Rightarrow 52.5 \mathrm{~W}$

(Input $2 \mathrm{~W}, \mathrm{I}_{\mathrm{dq}}=2.3 \mathrm{~A}, \mathrm{I}_{\mathrm{d}}=4.9 \mathrm{~A}$)
Gajów, June 9-11, 2017

Amplifier A (5 W)

Gen	Inp	Inp	Measur		Input	Output	Output	Drain	Total	
Level [dBm]	Level [dBm]	Level [W]	Level [dBm]	Id [A]	Power [W]	Power [dBm]	Power [W]	Efficiency [\%]	Efficiency [\%]	Gain [dB]
-14	19.10	0.081	6.40	1.90	45.6	37.00	5.01	11	9	17.9
-13	20.10	0.102	7.30	2.00	48.0	37.90	6.17	13	10	17.8
-12	21.15	0.130	8.20	2.10	50.4	38.80	7.59	15	12	17.7
-11	22.15	0.164	9.10	2.20	52.8	39.70	9.33	18	14	17.6
-10	23.20	0.209	10.00	2.40	57.6	40.60	11.48	20	16	17.4
-9	24.20	0.263	10.90	2.60	62.4	41.50	14.13	23	19	17.3
-8	25.20	0.331	11.80	2.80	67.2	42.40	17.38	26	22	17.2
-7	26.20	0.417	12.80	3.10	74.4	43.40	21.88	29	25	17.2
-6	27.20	0.525	13.70	3.50	84.0	44.30	26.92	32	28	17.1
-5	28.30	0.676	14.60	3.70	88.8	45.20	33.11	37	33	16.9
-4	29.40	0.871	15.10	3.97	95.3	45.70	37.15	39	35	16.3
-3	30.50	1.122	15.60	4.24	101.8	46.20	41.69	41	37	15.7
-2	31.60	1.445	15.70	4.31	103.4	46.30	42.66	41	37	14.7
-1	32.70	1.862								
0	33.80	2.399								
1	34.70	2.951								
2	35.50	3.548								
3	36.30	4.266								
4	37.00	5.012								

Amplifier C (8 W)

Gen	Inp	Inp	Measur		Input	Output	Output	Drain Efficien	Total fficien	
Level		Level	Level	Id	Power		Power	y	y	Gain
[dBm]	[dBm]	[W]	[dBm]	[A]	[W]	[dBm]	[W]	[\%]	[\%]	[dB]
-14	19.10	0.081	6.20	1.90	45.6	36.80	4.79	10	6	17.7
-13	20.10	0.102	7.20	1.90	45.6	37.80	6.03	13	7	17.7
-12	21.15	0.130	8.20	2.00	48.0	38.80	7.59	16	9	17.7
-11	22.15	0.164	9.00	2.20	52.8	39.60	9.12	17	10	17.5
-10	23.20	0.209	10.10	2.40	57.6	40.70	11.75	20	13	17.5
-9	24.20	0.263	10.90	2.60	62.4	41.50	14.13	23	14	17.3
-8	25.20	0.331	11.80	2.80	67.2	42.40	17.38	26	17	17.2
-7	26.20	0.417	12.70	3.10	74.4	43.30	21.38	29	19	17.1
-6	27.20	0.525	13.50	3.30	79.2	44.10	25.70	32	22	16.9
-5	28.30	0.676	14.40	3.60	86.4	45.00	31.62	37	26	16.7
-4	29.40	0.871	15.10	4.00	96.0	45.70	37.15	39	28	16.3
-3	30.50	1.122	15.70	4.30	103.2	46.30	42.66	41	31	15.8
-2	31.60	1.445	16.00	4.50	108.0	46.60	45.71	42	32	15.0
-1	32.70	1.862	16.30	4.80	115.2	46.90	48.98	43	32	14.2
0	33.80	2.399	16.60	4.99	119.8	47.20	52.48	44	34	13.4

Gajów, June 9-11, 2017

Gajów, June 9-11, 2017

Gajów, June 9-11, 2017

Gajów, June 9-11, 2017

Amplifier C-Drain efficiency

Gajów, June 9-11, 2017

10 GHz PA by OK2AQ

Figure 1. Two 10 GHz power amplifiers with TGA2312FL
Both PA are identical except drivers. TGA2312FL internal thermistor is used for a protection agains overheating. A $24 \mathrm{~V} / 12 \mathrm{~V}$ step down converter is used for the drivers supply. The TGA2312FL bearing including PCB with tuned microstrip structure were designed and produced by G3WDG.

The left one developed for OK1DFC has bigger driver - 8 W and gives 52 W output power at 2.4 W at the input. The total efficiency is a little bit worse due bigger driver.

The right one developed for OK2AQ has driver 4.5 W and gives 42 W output power at 1.4 W at the input. Very good total efficiency results in slightly warm cooler after long time operation.

Gajów, June 9-11, 2017

Gajów, June 9-11, 2017

CMPA801B025F

25 W, 8.0-11.0 GHz, GaN MMIC, Power Amplifier

Cree's CMPA801B025F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC is available in a 10 lead metal/ceramic flanged package for optimal electrical and thermal performance.

Typical Performance Over 8.5-11.0 GHz ($\mathrm{T}_{\mathrm{c}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	$\mathbf{8 . 5} \mathbf{~ G H z}$	$\mathbf{1 0 . 0} \mathbf{~ G H z}$	$\mathbf{1 1 . 0} \mathbf{~ G H z}$	Units
Output Power 1	38.0	37.0	35.5	W
Output Power 1	45.8	45.7	45.5	dBm
Power Added Efficiency 1	37.0	36.0	35.0	\%

Gajów, June 9-11, 2017

Cenypou uvodeny vCZK a poustanoweny pro kurz CNB 1 USD $=25,434 \mathrm{KC}$

DB6NT: 1 W costs ~ 67 EUR => $50 \mathrm{~W} \sim 3300$ EUR 60 W ~ 4000 EUR

Aibox dist
-Vrual O.
-vitual
Viruabobe.

Variales

Děkuji Vám za pozornost Thanks for your attention

