AO-40 on 13. 12. 2000 at 11:20 UTC

by M. Kasal
We had two sets of KEPS:

1. by James R. Miller based on ranging after 1. burn Attempt \#2 (12. 12. 2000):

AO-40

1	$26609 U$	$00072 B$	00346.67280000	.00000000	$00000-0$	$00000-0$	0
2	26609	6.4207	239.2459	8088586	192.0906	0.4805	1.25602300

2. by NORAD based on multiple tracking (20. 12. 2000)
```
AO-40
1 26609U 00072B 00354.78150463 .00000000 00000-0 00000-0 0 124
226609 6.2479 237.0656 8128421 195.4843 97.8395 1.26834511 
```

From both sets (of course, in Norad case back in the time) the satellite position is the same at the time of incident (13. 12. 2000 at 11:20:28):

AO-40 J. R. MILLER

Time: 11:20:47
MA $=68$
Subsatellite point:
Long: $17^{\circ} 41^{\prime} \mathrm{W}$
Lat: $0^{\circ} 26$ 'S
Altitude: 49186 km
$\mathrm{P}=1146,476 \mathrm{~min}$
SMA $=36285,80 \mathrm{~km}$
$\mathrm{Hp}=557,719 \mathrm{~km}$
$\mathrm{Ha}=59257,89 \mathrm{~km}$
True anomaly f = 163,0539735 deg
$\mathrm{r}=55447,76 \mathrm{~km}$
$V_{1}=1841,870 \mathrm{~m} / \mathrm{s}$
$\alpha_{1}=43,82 \mathrm{deg}$

AO-40 NORAD

Time: 11:20:47
MA $=-187(255-187=68)$
Subsatellite point:
Long: $17^{\circ} 50^{\prime} \mathrm{W}$
Lat: $0^{\circ} 23$ 'S
Altitude: 49042 km
$\mathrm{P}=1135,338 \mathrm{~min}$
SMA $=36050,41 \mathrm{~km}$
$\mathrm{Hp}=369,118 \mathrm{~km}$
$\mathrm{Ha}=58975,69 \mathrm{~km}$
True anomaly $\mathrm{f}=163,2907186$
$\mathrm{r}=55226,18 \mathrm{~km}$
$V_{2}=1838,055 \mathrm{~m} / \mathrm{s}$
$\alpha_{2}=43,46 \mathrm{deg}$

Conclusion: The satellite velocity was changed $\Delta V=V_{2}-V_{1}=-3,82 \mathrm{~m} / \mathrm{s}$. At the moment of incident the spacecraft has been influenced by vector $V \boldsymbol{x}=\mathbf{1 2 , 1 7} \mathbf{~ m} / \mathrm{s}$ in direction $\mathbf{1 0 8} \mathbf{d e g}$ to the original velocity $\boldsymbol{V}_{\mathbf{1}}$.

