New way how to use an oscilloscope

Jiří Janošík ROHDE & SCHWARZ-Praha, s.r.o. Holandská 878/2, Brno

Tel.: +420 725 776 778 Email: jiri.janosik@rohde-schwarz.com

Agenda

- I Rohde & Schwarz Introduction
- I Oscilloscope portfolio
- I Products Description
- I High definition option 16bit resolution

- I Live demonstration
 - I FFT on the RTO/RTE

The company group at a glance

I History

Established 1933 in Munich, Germany

Type of enterprise
 Independent family-owned company

I Global presence

In over 70 countries, approx. 60 subsidiaries

Net revenue
 Approx. EUR 1.75 billion (FY 13/14, July through June)

I Export share

More than 90 percent

Employees 9800 worldwide, with approx. 700 in the Czech republic - Vimperk

I Success

A leading international supplier in all of its fields of business

Our customers

- Wireless communication industry for voice and data applications (suppliers of RF chip sets, modules, systems and mobile handsets)
- Wireless communication network element suppliers and operators
- Aerospace & defense wireless application suppliers
- Service centers
- Automotive industry
- Test houses
- Research (such as universities)

Our product groups

- Mobile radio measurements (voice and data)
- All-purpose RF and microwave measurements (for example signal generation & analysis)
- Oscilloscopes
- Audio measurements
- EMC measurements
- Automated test systems and turn-key solutions

Typical product application fields

Mobile phone test Base station test Signal generation Spectrum / signal analysis Network analysis Protocol analysis Power measurement Audio analysis EMC solutions

		Obe control	<u> </u>	12 11
in Setup Cleanup Parameters Locals	View: E MainSequence			•
itep	Description	Execution Flow	Comment	
Sa Cal Temperature	Pass/Fail Test, GSM_NonSig_Cal_Temperature			
Store UH data	Pass/Fail Test, UUT_Data_StoreUHData FileGI			
So Deleg 2	Action, tempo(2);	Skip		
Measure : Receiver Check at LNA OFF				
Second RF Generator Settings	Pass/Fal Test, GSM_Conf_RF_Generator_Setti.			
Beceiver Check LN4 OFF	Numeric Linit Test, No Comparison, UUT_Data			
Section 2 Check at LNA ON				
Secreter Check LN4 0N	Numeric Limit Test, GELE (>= <+), UUT_Data			
Measure : TXCalbration				
So Use Del Cal Data	Pass/Fail Test, UUT Data UseDelCaDataFile			
Se tx cal	Pass/Fall Test, GSM NonSig, Call TX, UUT(Th			
Measure : TX Checking				
Check Peak Power Ch62 at PCL 5	Numeric Limit Test, GELE (>= <+), GSM_NorSi.			
General Peak Power Ch62 at PCL 7	Numeric Limit Test, GELE (>= <+), GSM_NorSi.			
Geneck Peak Power Ch62 at PCL 19	Numeric Limit Test, GELE () = (+), GSM_NorSi			
General Check Peak Power Ch68 at PCL 5	Numeric Limit Test, GELE (>= <=), GSM_NonSi,			
General Check Peak Power Ch68 at PCL 7	Numeric Limit Test, GELE (>= <=), GSM_NonSi,			
Grand Date Description and the	Numerical limit Tant OFLE (tor call, DEM, March			

R&S[®]RTx at a glance

Model	R&S [®] RTM2000	R&S [®] RTE	R&S [®] RTO
Bandwidth	200 MHz 350 MHz 500 MHz 1 GHz	200 MHz 350 MHz 500 MHz 1 GHz 1,5 GHz 2 GHz	 600 MHz 1 GHz 2 GHz 4 GHz
Number of channels	2/4	2/4	2/4 / RTO1044: 4
Sampling rate	2.5 GSa/s 5 GSa/s interleaved	5 GSa/s	10 GSa/s RTO1044: 20 GSa/s interleaved
Memory depth Per ch / interleaved	10 MSa / 20 MSa	10 MSa / 40 MSa 50 MSa / 200 MSa max upgr.	20 MSa / 80 MSa 100 MSa / 400 MSa max upgr.
Acquisition rate	12.500 wfms/s	1.000.000 wfms/s	1.000.000 wfms/s
Max. vertical resolution	16 bit witt high resolution decimation mode	16 bit with High Definition option	16 bit with High Definition option
Min. input sensitivity @ 50 Ω coupling	1 mV/div at full bandwidth w/o magnification	500 µV/div at full bandwidth w/o magnification	1 mV/div at full bandwidth w/o magnification
Measurement/ trigger capabilities	Basic	Advanced Digital trigger system	Expert; max setup flexibility Digital trigger system
MSO	 Upgradable 16 digital channels 400 MHz, 2.5 GSa/s, 10 MSa 	 Upgradable 16 digital channels 400 MHz, 5 GSa/s, 100 MSa, 200,000 wfms/s Analog Bus Display 	 Upgradable 16 digital channels 400 MHz, 5 GSa/s, 200 MSa, 200,000 wfms/s Analog Bus Display

Software options

Designation	RTO	RTE	RTM
Software options - Serial triggering and decoding			
I ² C/SPI serial triggering and decoding	YES	YES	YES
UART/RS-232/RS422/RS485 serial triggering and decoding	YES	YES	YES
CAN/LIN serial triggering and decoding, incl. CAN-dbc import	YES	YES	YES
FlexRay [™] serial triggering and decoding	YES	YES	YES
I ² S/LJ/RJ/TDM serial triggering and decoding	YES	YES	YES
MIL-1553 serial triggering and decoding	YES	YES	YES
ARINC 429 serial triggering and decoding	YES	YES	YES
Ethernet serial decoding	YES	YES	NO
CAN-FD serial triggering and decoding	YES	YES	NO
MIPI RFFE Triggering and Decoding	YES	NO	NO
Manchester and NRZ Serial Triggering and Decoding	YES	YES	NO
History and segmented memory	Standard	Standard	YES
Spectrum analysis and spectrogram	-	-	YES
8b10b Serial Decoding	YES	NO	NO
MDIO serial triggering and decoding	YES	YES	NO
USB 1.0/1.1/2.0/HSIC Triggering and Decoding	YES	YES	NO
Software Options - Compliance tests			
USB 2.0 Compliance Test Software	YES	NO	NO
Ethernet Compliance Test (10/100/1000BaseT)	YES	NO	NO
10G Ethernet Compliance Test	YES	NO	NO
BroadR-Reach Compliance	YES	NO	NO
MIPI D-PHY Compliance test	YES	NO	NO
Software Options - Analysis			
I/Q Software Interface	YES	NO	NO
Jitter Analysis	YES	NO	NO
Clock Data Recovery	YES	NO	NO
High Definition Mode, vertical resolution up to 16 bit	YES	YES	NO
Power Analysis	YES	YES	YES

R&S®RTO/RTE-K17 High Definition Option

- I 16 bits Vertical resolution
- I 256x Improvement over 8 bit resolution
- I 0,04 Division trigger sensitivity
- I 1ps Trigger jitter w/o DSP correction

 \rightarrow Noise is reduced

2 SCHWARZ

- → Signal-to-noise ratio (SNR) increases
- \rightarrow Vertical resolution is enhanced

Theory

Simple calculation on achieving higher resolution with moving average

For every increase of the number of summed values by the factor of 2, the resolution is doubled (increased of 1 bit resolution)

Why not Hi-Res decimation?

Example (I)

I More signal details and more precise analysis results

High Definition inactive

Quantization steps clearly visible.

High Definition active

"Hidden" low level signal becomes visible. Signal characteristics can be measured.

Example (II)

I Real-time triggering on smallest signal details

High Definition active

Overshoot of 9 mV an a 1 V signal

Vertical scaling is 140 mV/div

Peak is just a fraction of one division and Digital trigger can still trigger on the peak

HighRes Decimation vs HD mode

Drawbacks of HighRes

2014-10-21 15:03:16 Horizonta Trigger 600 ns 200 ns 400 ns 2.7697 original signal @ 10GSa/s 570 mV/div High | TA: Off Pos:0 div HighRes with decimation factor 10 Scl: 570 mV/div Src: Ch1Wfm1 Pos:0 div Scl: 570 mV/div Src: Ch1Wfm1 39.6 ns 46.2 ns 2.2077)

Flexible bandwidth adjustment

Vertical Resolution	R&S [®] RTO Filtered BW in HD	R&S [®] RTE Filtered BW in HD
8 bit	Full (HD inactive)	Full (HD inactive)
10 bit	1 GHz	500 MHz
11 bit	-	300 MHz
12 bit	500 MHz	-
12 bit	300 MHz	200 MHz
13 bit	200 MHz	100 MHz
14 bit	100 MHz	50 MHz
16 bit	50 MHz to 10 kHz	30 MHz to 10 kHz

Benefits of High Definition Mode

- More signal details and more precise analysis results
 - Sharper waveforms
 - Signal details are made visible otherwise masked by noise
 - More precise analysis results
 - 500 uV/div available w/ HD active (software based)
- Real-time triggering on smallest signal details
 - Unique for R&S digital trigger: every 16-bit sample is checked against the trigger condition → enough trigger sensitivity
- Full sample rate and high time resolution available
 - No decimation

Truly uncompromised FFT: the easy way to analyze the signal spectrum

- FFT-based spectrum analysis: powerful and user-friendly
 - Easy to use and flexible: first results with only two clicks
 - Spectrum analyzer look-and-feel
 - High measurement speed and fast display
 - High dynamic range
 - Gated FFT
 - Cursors
 - Mask test
- Application examples
 - EMI debugging
 - VCO testing
 - Spectral measurements

1AL	Channel power
- Al	Occupied bandwidth
n An	Bandwidth
liı	THD
liı	Harmonic search

Fast Fourier Transform Concept

Definition FFT

- Fast Fourier Transform
- Algorithm for transforming data from time domain to frequency domain

Examples for applications

- I Testing the impulse response of filters and systems
- Measuring harmonic content and distortion in systems
- I Identifying and locating noise and interference sources
- Analyzing harmonics in 50 and 60 Hz power lines

FFT in Oscilloscopes

General Spectrum Measurements

Gated Spectrum Measurements

Modulation Measurements – AM

Modulation Measurements – FM

DE&SCHWARZ

Modulation Measurements – GSM burst

IDE&SCHWARZ

Modulation measurements - WLAN 802.11g

Maximum possible Dynamic Range – Averaging

ROHDE&SCHWARZ

Maximum possible Dynamic Range – Averaging

Maximum possible Dynamic Range – Memory Depth

10 MHz CW Carrier, -10 dBm

Record Length: 1 kSa

Record Length: 10 kSa

Record Length: 100 kSa

FFT detection of low signals

EMI Debugging with the oscilloscope

R&S ® RTO

Near-field sniffer Probes R&S ® HZ-15 E- and H-field

30 MHz – 1 GHz Can be used down to 100 kHz

> Optional: R&S ® HZ-16 Preamplifier

Time Domain Gated FFT

- Time domain gating is inversely proportional to the RBW
- **Broader gate => Smaller RBW (higher freq resolution)**
- RTO is capable of displaying FFT from different gate area to help in identifying spectral source

History Mode with FFT

- I Data acquired in the memory can be retrieve and analyze in FFT
- I Data captured in Ultra-Segmentation when view in History mode can also be analyze in FFT

Since data is already acquired in memory, there is a limitation in manipulating the resolution and frequency span.

Spectral Mask Testing

I User can also make use of mask testing to "capture" spectral violation

RTO/RTE - Multiple domain instruments

Analysis Found

- Time domain analysis
- Logic analysis with MSO option
- Serial protocol analysis with low-speed serial bus trigger and decode options
- Frequency analysis with builtin FFT on four channels from DC to 4/2 GHz
- R&S[®]ProbeMeter: Integrated voltmeter in the R&S active probes for precise DC measurements

Time for questions...

