
Fig. 2.1A.1 Diffraction on a half

plane

2.1 Diffraction on a planar absorbing object

Basic theory

We are going to study the wave diffraction in the following situation. Between the wave source V

and  the  observation  point  P,  a  thin  planar  object,  which  neither  reflects  nor  transmits

electromagnetic waves, (so called absorbing object) is placed.  In the object,  a small window is

cut. Through the window, the wave can propagate from the source to the observation point. The

object can have a form of a half-plane as depicted in fig. 2.1A.1 (the free upper half-plane plays

the role of the window here). Computing the intensity in the observation point P is our task.

The described situation approximates a certain category of practical problems (wave propagation

behind a chine, e.g).

For the first time, A. J.  Fresnel (1788 - 1827) solved the above-formulated task. He elected a

relatively simple approach we are going to explain now. The Fresnel solution is usually called the

Fresnel diffraction.

The plane of the object is signed S. The plane is assumed being perpendicular to the line VP. No matter the problem is solved for the half-plane

(fig. 2.1A.1), the approach can be extended even to differently shaped windows.

First, electric-field intensity E(S) is computed in the plane of the object S the same way as the object is absent. More, the spherical wave is

assumed to propagate from the source V (fig. 2.1A.1), and therefore

E(S) = C
e− jkr1

r1
. ( 2.1A.1 )

Here, C is a constant dependent on the radiated power and k denotes wave number.

Now,  Huygens principle is applied.  The plane S  is left-illuminated and every its element dS is considered to be a radiation source for the

right-hand half-space. Illumination intensity E(S) is given by eqn. (2.1A.1) for the region lying above the edge of the object (half-plane S1), but

E(S) = 0 below the edge due to the absorption nature of the object.

Each element of the free part of the plane S can be therefore considered as Huygens source illuminated by the wave of the intensity (2.1A.1).

Now, we have to perform summation of field intensities created by those sources in the point P. Using the relation for the field intensity created

by the Huygens source, we get

E (P) =
j

λ

⌠
⌡
⎮⎮

S1

E (S) cos(n, r2) e− jkr2

r2
dS. ( 2.1A.2 )

Integration is performed on the free (transmitting) part of the plane S (in the integral, we formally sign that as S1). From the physical point of

view, the problem is solved out.

In order to solve the integral (2.1A.2), Fresnel had to accept some simplifications. All these simplifications are based on the assumption that the

most important contribution to the intensity in P  is caused by the Huygens sources lying near to the upper edge of the object (i.e.,  even

relatively near to the origin O as depicted in fig. 2.1A.1). For those source, the angle between the normal n to the object plane and the radius

vector r2 to the observation point is small, and therefore, we can assume cos( n, r2) = 1. Next, the coordinates x, y of single Huygens sources

can be assumed to be (numerically) small comparing to distances d1 and d2. Exploiting rules for small-numbers computation, we get
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]. ( 2.1A.3 )

Finally, we assume r1 = d1 and r2 = d2 in the denominators of the fractions (2.1A.1) a (2.1A.2) because these assumptions negligibly influence

the amplitude value of the total electric field intensity only. Performing these simplifications, the integral (2.1A.2) becomes solvable and the

result can be expressed (for simpler shapes of the window S1) in closed,  relatively simple form. The details are given in the layer B of the

textbook.

Using numerical methods, the integral (2.1A.2) can be solved without simplifications. Nevertheless, numerical methods are usually exploited in

the case of complicated shapes of the window only. For the half-plane diffraction, the Fresnel (analytical) solution is simple, well understandable

and its accuracy is sufficient for most applications.

Let us remind the reader that the Fresnel diffraction considers:

a planar absorbing object,1.
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Fig. 2.1A.2 Dependence of intensity

|E(P)| on the height of

the object

an application of Huygens principle,2.

the above-described simplifications used when analytically solving an integral.3.

The transmitting window can be of an arbitrary shape.

In the following, we consider a half-plane object (fig. 2.1A.1).

Exploiting the above-described approach, the field intensity in the observation point P can be

computed depending on the distances d1 and d2, on the upper-edge height y0 (which can be

even  negative  if  the  edge  is  below the  line  VP),  on  the  wavelength  and  on  the  source

properties  V.  In order to  reduce the number of input  quantities,  field intensity  is  usually

related to the field intensity in the same point in the situation when the object is removed; we

therefore  compute  the  ratio  E  (behind  the  object)  /  E  (in  free  space).  Moreover,  the

upper-edge coordinate y0 is not given in meters but in Fresnel zone radii r0n. Then the result

is independent on values of d1, d2 and λ. In the object plane, Fresnel zones are of the shape

of annuli (the border between the neighboring zones are circles with the common center in

the intersect of the line VP and the object plane (O).  Fresnel zone radii can be computed

according to

r0n ≅ n√ λ
d1d2

d1 +d2√ , ( 2.1A.4 )

which accurate enough if the computed radius is small with respect to the distances d1 and d2. More detailed information about Fresnel zones is

given in the layer B.

Relative field-intensity (E/Evp) dependency on the edge height y0 is depicted in fig. 2.1A.2.  We can see that the half-plane influences field-

intensity in P even if y0 is negative and the line VP is not interrupted by the object. If y0 goes from negative values to zero, field intensity rises

and drops down in cyclic way, and the variation amplitude increases up to nearly 3 dB. If y0 = r01/2 (approximately one half of the first Fresnel

zone is free between the line VP and the edge), magnitude of the intensity is the same as in free space without objects. If the edge is nearer to

the line VP or even above it (y0 is positive, the line VP is interrupted by the object), the object shades and the field intensity monotonously

decreases. For y0 = 0, E/Evp = 1/2.

A cyclic variation of field intensity for y0 < 0 is a rather interesting phenomenon, which can be observed even experimentally both on radio

frequencies and on optical ones.  In literature,  a cyclic covering and uncovering Fresnel zones explain the phenomenon.  Unfortunately,  this

explanation is not accurate and well understandable. Exact explanation is presented in the layer B.  Graphical representation is provided by a

program, which is introduced in the layer C.

Finally,  a small note. In the surrounding of a well conducting object,  which does not transmit and absorb electromagnetic waves but reflect

them, the diffraction phenomena are of different nature. This situation is described in the chapter 2.2.
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