
Fig. 2.1B.1 Half-plane

diffraction

2.1 Diffraction on a planar absorbing object

Advanced theory

Assume a planar object, which is perpendicular to the line VP (wave source - observation point)

and which is partially covered by a perfectly absorbing matter. The rest of the plane is free, and

therefore, waves can past through this area to the half-space containing the observation point P.

Computing field intensity in P is our task. Except of the marginal case (all the plane is free), we

deal with the diffraction task.

A classical solution of the above-formulated task was provided by Fresnel (Fresnel diffraction).

Fresnel assumed the planar obstacle (field intensity of its reverse side) as a wave source for the

half-plane containing the observation point P. Hence, Fresnel understood the planar obstacle as a

large planar antenna. Next, Fresnel expected the intensity on the reverse side being zero in points

covered by the absorbing matter and being non-zero (uninfluenced by the obstacle)  in points

above the obstacle edge. Both the assumptions are inaccurate but the reality usually approaches

them. Thanks to this conception, the diffraction task is well solvable as two independent tasks: wave propagation from the source to the obstacle

plane and wave propagation from free regions of the plane to the observation point. That way, the obstacle was removed pro computations and

the result is influenced by the shape of free regions only.

In the basic theory, Fresnel solution for the half-plane obstacle (fig. 2.1B.1) was briefly presented.

Since spherical wave propagates from the source V, field intensity on the obstacle plain is

E(S) = C
e− jkr1

r1
, ( 2.1B.1 )

where k is wave number, C is a constant dependent on a radiated power and a directivity factor of the transmitting antenna, and where the

distance r1 is given by r1 = d1
2 + x2 + y2√ .  Symbols x,  y denote coordinates of a point on the obstacle plane. Every point (x,  y),  or every

element dS  = dxdy  is  left-illuminated by the  intensity  (2.1B.1) and it becomes (according to  Huygens principle)  the  wave source  for the

right-hand half-space. It contributes to the intensity in P by dE (P) =
j

λ
E (S) cos(n, r) e− jkr

r dS.

Integrating all the contributions of the free part of the obstacle plane (i.e. -∞ < x < +∞, y0 < y < +∞) we yield the final intensity in P

E (P) =
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λ
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dydx. ( 2.1B.2 )

Let us note that changing the shape of the window in the obstacle plane changes integration limits only.

In order to finish the computations, Fresnel proposed some simplifications, which are characteristic to his approach. They are mostly based on

the assumption that the strongest contribution to the field intensity in P is given by elementary sources dxdy lying near to the line VP,  i.e.

sources lying on coordinates specified by inequalities x << d1,2 and y << d1,2. Then, we can assume cos(n,r2) = 1, and in denominators r1 = d1,

r2 = d2. In phase terms, distances r1 and r2 have to be expressed more accuratelly
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]. ( 2.1B.3 )

Performing the described rearrangements, we get

E (P) = C
j

λ

⌠
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∞

⌠
⌡

−∞

∞

exp(− jax2)exp(− jay2)dxd y
( 2.1B.4 )

where

a = k
2

d1 +d2
d1d2

. ( 2.1B.5 )

Since  in  the  integrand  of  (2.1B.4),  every  term  is  a  function  of  a  single  variable,  knowledge  of  the  solution  of  the  integral

⌠
⌡exp(− jau2)du,  u = x, y is sufficient. Substituting
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Fig. 2.1B.2 Clothoid (number on curve are values

of the argument v)

u = v
π
2a√ ( 2.1B.6 )

we transform the above integral to Fresnel integrals
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⎠⎟dv = C(v) − jS(v). ( 2.1B.7 )

Values of Fresnel integrals C(v) and S(v) are tabularized, are programmed and are graphically expressed as coordinates of the curve depicted in

fig. 2.1B.2. The curve is called klothoidy. Numbers on the curve are argument values v and respective values of integrals C(v) and S(v) are read

on axes. The right (upper) branch ends at the point C(v=∞) = 0.5, S(v=∞) = 0.5 and the left branch is symmetric with respect to the origin.

The final solution of the task is of the form

E (P) = C
exp[− jk(d1 +d2)]

d1 +d2

2√
4 exp(

jπ

4 ){[1 − 2C(v0)] − j[1 − 2S(v0)]},  v0 = y0
2a
π√ . ( 2.1B.8 )

Dependency of the field intensity in P (behind the obstacle) on the obstacle height y0 was discussed in the basic theory. We remind here that the

obstacle influences the wave propagation even if the direct line VP is not interrupted and that the obstacle can cause even a small increase of

intensity (comparing to free-space propagation). If the distance between the obstacle edge and the line VP becomes smaller than one half of the

first Fresnel zone then field intensity starts to decrease below the level given by free-space propagation.

Since in the integrand of the integral (2.1B.4), every term is a function of a single variable, the integral can be rewritten as a product of two

independent integrals: the first one according to dx, the second one according to dy. The integral according to dx is of infinite limits, its value is

independent on the obstacle height and is constant for the given situation. I.e.,  field intensity in P is proportional to the value of the integral

according to y, and therefore, using the substitution (2.1B.6)

⌠
⌡
⎮
v0

∞

exp(− j
πv2

2 )dv = [C(∞) − jS(∞)] − [C(v0) − jS(v0)],  v0 = y0
2a
π√ .

( 2.1B.9 )

The right-hand side of (2.1B.9) is a difference of two complex numbers in a complex plane C(v),  jS(v),  i.e.  in a klothoidy plane in the fig.

2.1B.2, where the vertical axis plays the role of the imaginary one.

Difference  of  coordinates  of  two  points  in  a  complex plane  equals  to  the

abscissa length from the first point to the second one. Finally, the field intensity

in P is proportional to the abscissa length from [C(v0), S(v0)] to [C(∞), S(∞)] on

the klothoidy. The point [C(∞), S(∞)] is a point of coordinates 0.5, 0.5 and is

fixed.  If the upper edge of the obstacle rises to the line VP,  the point [C(v0),

S(v0)] being on the left (down) klothoidy.  Klothoidy branch travels along the

curve towards the origin and the abscissa length rises and decreases in cyclic

way.  When [C(v0),  S(v0)] leaves the last spire of the left branch,  oscillations

stop and both the abscissa length and the field-intensity monotonously decrease.

These phenomena are demonstrated by a computer program, which is described

in the layer C.

In order to illustrate the influence of Fresnel zones to the field intensity behind

the  obstacle,  we  consider  again  the  general  result  (2.1B.2).  Instead  of

coordinates x, y of a facet dS, we introduce a radial distance r0 = x2 + y2√  of

the facet from the origin. Then,

E (P) = C
exp[− jk(d1 +d2)]

d1 +d2

j

λ
⌠
⌡
S

exp(− jar0
2)dS. ( 2.1B.10 )

We can see that contributions of facets in the different distance from the origin are of the different phase (-ar0
2). In the distances r01, r02, ... r0n

given by

ar0n
2 = n π ( 2.1B.11 )

the phase is retarded for 180°. This is caused by enlarging the pointed line V - dS - P for l /2. The radii r0n in eqn. (2.1B.11) are the radii of the
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external border of given Fresnel zones. Substituting a from (2.1B.5) to (2.1B.11), we get a result, which is identical with (2.1A.4).

The fact that the phase of contributions of neighboring Fresnel zones (on the plane S) differs for 180° has got interesting causes. Let us imagine

that the absorbing obstacle cover all the plane S. To this covered plane, a circular window with the center in O and with the arbitrary radius r0 is

cut. Though this window, wave propagates to the point P. Computing intensity E(P), we use eqn. (2.1B.10) and thanks to the rational symmetry

of the window, we perform integration on S (over window) in polar coordinates: dS = r0 djdr0:

E (P) = C
exp[− jk(d1 +d2)]

d1d2

j

λ
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r0 exp(− jar0
2)dφdr0 . ( 2.1B.12 )

The integral is easily solvable using the substitution r0
2 = r. Inscribing by

E0 = C
exp[− jk(d1 +d2)]

d1d2
( 2.1B.13 )

the free-space field intensity in P, following results are obtained for different window radii r0:

Tab. 2.1B.1 Intensity values for different window radios

Window radio r0 Zones Intensity E(P)

∞ All the space free E0

0.58 r01 Apart of the 1st Fresnel zone free E0

r01 All the 1st Fresnel zone free 2E0

r02 The 1st Fresnel zone and the 2nd one free 0

Observing results, we might conclude that field intensity E0 we measure in P without the obstacle present, is created by contributions of a free

part of the first Fresnel zone and that contributions of the rest of S mutually eliminate. Unfortunately, the conclusion is not correct (we cannot

determine the part of Fresnel zone producing the contributions which are not eliminated). On the other hand, covering single zones can suppress

the mutual elimination and field intensity can be increased in P that way. Covering all the even Fresnel zones (all the odd ones) yields E(P) = ∞.

Such coverage acts as a burning glass, which focuses the wave to point P.
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