
2.3 Geometrical optics

Advanced theory

Today&s geometrical optics (GO) enables to examine the propagation of electromagnetic waves even in complex inhomogeneous media of a

given type. As the classical geometrical optics, GO is based on the notion that waves propagate along beams, which can be even curvilinear

now. GO is based on the exact mathematical theory coming out Maxwell equations and enabling to compute not only wave trajectories but too

variation of magnitude and phase of field intensity and wave polarization. Moreover, the method is well-understandable thanks to the simple

notion of beams.

As already described in the layer A, theory of geometrical optics is based on the following two assumptions:

Wave number k is high (so that some terms containing the higher power of k in the denominator can be neglected during mathematical

rearrangements). This assumption predetermines geometrical optics to the applications in the area of optical frequencies. Since the wave

number is not needed being extremely high, the method can be used even for radio frequencies.

1.

The wave is examined in a relatively long distance from the source. In such distance, wave amplitude varies slowly whereas the wave

phase changes quickly (for 2π for every wavelength).

2.

In the following, our attention is focused in the media exhibiting a continuous variation permittivity and permeability. The media are assumed to

be lossless. Refractive index of the medium

n =
εµ

ε0 µ0√ = εr µr√ ( 2.3B.1 )

is a real number and is a function of the position (x, y, z). Symbol s denotes the coordinate (curvilinear in general), which is measured along the

direction of propagation.

Investigating the wave propagation in a homogeneous medium, wave number k = k0(εrµr)
1/2 = k0n and the propagation direction are usually

known. E.g., the following relation is valid for the field intensity of a plane wave

E = E0 exp(− jks) (s is in the propagation direction) ( 2.3B.2a )

On the part of the trajectory ds, the phase changes for

dφ = kds = k0nds. ( 2.3B.2b )

In the coordinate system x, y, z, the propagation direction need not to be identical with the direction of a coordinate axis. We usually solve this

situation by considering the wave number k as a vector oriented to the propagation direction. Its components kx,  ky,  kz,  to the directions of

coordinate axes are wave numbers in the directions x, y, z. In two arbitrarily located points A, B, which coordinates differ for dx, dy, dz, the

phases differ for

dφ = kx dx + kyd y + kzdz. ( 2.3B.3 )

Geometrical optics does not suppose any a priori knowledge of the direction of wave propagation, because it is different in different points (in

the medium of a variable refractive index). In parallel with (2.3B.2), we use

E = Em exp[− jk0L(x, y, z)] ( 2.3B.4a )

dφ = k0dL, ( 2.3B.4b )

where the distance is not explicitly present. The quantity L is a scalar function of coordinates x, y, z, it is called eiconale and it determines the

phase of field intensity in every point. Comparing (2.3A.4b) and (2.3A.2b) shows that on the infinitely short path ds (where n = const), is

dL = nds. ( 2.3B.5 )

Considering (2.3A.4), equation L = const is the equation of a plane, where wave is of the same phase, i.e.  the equation of a wave surface.

Vector grad L is of the direction of the steepest variation of the eiconale (i.e., even of the phase), and this is the direction of wave propagation.

For example:

dL
ds

= ||grad  L||

and according to (2.3A.5) is

dL
ds

= n,

and therefore
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Fig. 2.3B.1 Two-dimensional

inhomogenous medium

||grad  L|| = n ( 2.3B.6 )

or

k0
dL
dx

= k0
dL
ds

ds
dx

= k0
dL
ds

cos(x, s) = k0n cos(x, s) = kx . ( 2.3B.7 )

As already said in the layer A, the equation

||grad  L|| =
⎛⎝∂L

∂ x
⎞⎠

2
+ (∂ L

∂ y)2
+

⎛⎝∂ L
∂ z

⎞⎠
2

√ = n ( 2.3B.8 )

is considered as the basic equation of the geometrical optics. The vector grad L is of the direction of wave propagation in every point, and the

curve, which tangent is of the direction grad L in every point,  is called beam. Beams can be curvilinear and eqn. (2.3B.8) is the differential

equation of beams.

For practical calculations, the form (2.3B.8) is inconvenient. Instead, following equations are used:

∂
∂s

⎛⎝n
∂ x
∂ s

⎞⎠ =
∂n
∂ x

,   
∂
∂s (n

∂ y

∂s ) =
∂n
∂ y

,   
∂
∂s

⎛⎝n
∂ z
∂s

⎞⎠ =
∂n
∂ z

, ( 2.3B.9 )

⎛⎝∂ x
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2

+ (∂ y

∂s )
2

+
⎛⎝∂ z

∂s
⎞⎠

2
= 1. ( 2.3B.10 )

As already said, s is the coordinate along the beam. Now, the way of deriving the first of relations (2.3B.9) is demonstrated.

In  a  homogeneous  medium,  we  exploit  in  computations  the  wave  number,  and  we

understand it as a vector, which is oriented to the propagation direction. Components of k

are kx and ky (in two dimensions) and we can imagine that wave propagates from any point

along the pointed trajectory going in parallel to x (wave number kx  ) and then,  going in

parallel to y (wave number ky ). n an inhomogeneous medium, the same approach can be

used within a very small region dx, dy only, where the refractive index can be considered

constant. In the frame of the whole medium, kx and ky vary, and those variations have to

be examined first.

In an inhomogeneous medium, computing with refractive index is preferred to computing

with wave number. Since k = k0 n and wave number is a vector, even the right-hand side

of the equation has to be a vector. Hence, the refractive index n assumed being vector. Its

magnitude is n and its direction is identical with the wave propagation (in general, different

in  different  points).  Components  nx  and  ny  correspond  to  respective  wave  numbers,  e.g.  kx  =  k0  nx.  This  formalism  converted  the

inhomogeneous medium to the anisotropic medium, which is not truth from the microscopic point of view. From the macroscopic point of view,

this might be considered as a truth: if wave enters the medium in various directions, the trajectory is incurvated different way every time. In the

homogeneous medium, the situation is different.

Assume a two-dimensional medium, where refractive index varies in the direction x only. In fig. 2.3B.1, two elementary layers of this medium

are depicted, including respective quantities. Let us examine variations of components of refractive index nx = n cos(α) and ny = nsin(α) in the

direction x:

dnx = d(n cos α) = (n + dn)cos(α + dα) − n cos α,

dny = d(n sin α) = (n + dn)sin(α + dα) − n sin α

Rewriting goniometric functions, multiplying, and substituting sin (dα) = dα, cos(dα) = 1 yield

dnx = dn cos(α) − n sin(α)dα, ( 2.3B.11a )

dny = dn sin(α) − n cos(α)dα. ( 2.3B.11b )

Next, the variation of dny in the direction x,  i.e.  dny/dx, has to equal zero. This is caused by the fact that two waves propagating along the

boundary at different sides near each other have to be of the same wave number, although they propagate in different media. In the opposite

case, a continuously rising phase shift between these two waves would exists,  and on the boundary, a phase jump would appear,  which is

impossible.

In (2.3B.11b), we put dny = 0, express dα and substitute to (2.3B.11a). We get:

dnx =
dn

cos α. ( 2.3B.12 )

The above relation is rather interesting. It shows that the variation dnx is higher than the variation of the refractive index dn at the same point.
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Fig. 2.3B.2 Astigmatic beam

The next steps are relatively simple. Eqn. (2.3B.12) is divided by dx and rearranged: dnx/dx = (dnx/ds)(ds/dx) = (dnx/ds)(1/cos(α)). The term

cos(α) vanishes and we get the relation (2.3B.9a).

Exploitation of (2.3B.9) and (2.3B.10) is demonstrated by the following example.

Assume a two-dimensional medium (x,  y),  where the permittivity ε,  and consequently the refractive index n,  continuously vary along the

coordinate y in accordance with the function n(y); along the coordinate x, the refractive index is constant. Since ∂n/∂x = 0, eqn. (2.3B.9a) results

to:

∂ x
∂ s

=
C
n . ( 2.3B.13 )

Here, C is an integration constant. Substituting to (2.3B.10), the term containing z is deleted because the task is two-dimensional, and we get

∂ y

∂s
= 1 −

⎛⎝C
n

⎞⎠
2

√ . ( 2.3B.14 )

Dividing both equations, the variable s is eliminated and the differential equation of the beam is obtained:

∂ x
∂ y

=
C
n

1

1−(C
n )2√

.
( 2.3B.15 )

We substitute a given function n(y) and integrated (analytically or numerically). The equation of the beam y = f(x) is the result. The integration

constant C is determined using a boundary condition, a known beam direction in a given point.  If the value of the eiconale is known in this

point LA (A e.g.), we can compute its value in another different point (B e.g.) on the same beam. Using (2.3B.5), we get

LB = LA + ⌠
⌡A

B
n  ds, ( 2.3B.16 )

if the integration path follows the beam. In our task, the differential ds is replaced by the differential dy according to (2.3B.14), n is replaced by

n(y) and integration is performed according toy from yA to yB . [End of example]

In layer A, we have found that geometrical optics enables to compute intensity changes during the propagation. This ability is conditioned by the

knowledge of computing the shape of beams, i.e. the trajectory of wave. Computation of the intensity is based on the fact that wave energy

propagates along beams. This means, that no electromagnetic energy leaves or enters the walls of a tube, which appears when displaying many

neighboring beams and which transversal cut gives a closed curve. Energy propagates inside the tube along beams only. On the basis of this

idea, the following relation was derived in the layer A:

ε1
µ1√ ||E1

||
2

dS1 =
ε2
µ2√ ||E2

||
2

dS2 . ( 2.3B.17 )

Eqn. (2.3B.17) is not valid for regions, where beams cut (which would cause an infinite field

intensity). Such situation appears in a focus and on a caustics. The term caustics is explained

thereinafter.

Sometimes, beams can exhibit different curvature radii of wave surface in different planes

(e.g., astigmatic beams). A part of such a tube is depicted in fig. 2.3B.2.

The curvature center of the equiphase surface in the horizontal plane is denoted as Oh, and in

the vertical one as Ov.  The distances of facet dS1 and Oh  (Ov) is r1 (r2), r is the distance

between facets dS1 and dS2.

Considering fig. 2.3B.2, we get:

dS1 = r1dα r2dβ,   dS2 = (r1 + r)dα (r2 + r)dβ.

Dividing relations,  we express the radius of both the facets,  and using (2.3B.17),  we compute the ratio of intensities.  For a homogeneous

medium, when respecting phase variation, we get:

E2 = E1

r1r2

(r1 +r) (r2 +r)√ exp(− jkr). ( 2.3B.18 )

The described method of the geometric optics can be used to the examination of the electromagnetic wave propagation through the medium

which structure  corresponds  to  the  idealized ionospheric  layer  (if  the  scaling factor  is  not  considered).  Wave radiated by a  point  source

propagates  through  the  medium with  the  unitary  dielectric  constant  first,  and  then  continues  through  the  layer  which  dielectric  constant

decreases down to a certain minimum, and then rises to 1 again. For the given dependency of the dielectric constant in the layer and for the

given position of a source, the wave trajectory, the equiphase surface and the eiconale increase can be computed by numeric integration.
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Below the layer,  where several waves are propagating (due to the trajectory curvature), the direction of the propagation, field intensity and

eiconale (phase) can be computed for each wave. Computations show that beams return back by nice curls in a certain part of space. Tops of

the curls can be connected by an imaginary spline, which is not crossed by any beam, and in a close vicinity of which (below) two neighboring

beams intersect. This spline (or a surface in space) is called caustics.
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