
2.5 Wave propagation in layered media

Basic theory

In several technical equipments,  media consisting of several layers,  which differ in their permittivity,  permeability and thickness,  are used.

Hence, the layered medium is composed of a certain number of plan-parallel dielectric layers (or slabs).

The layered media (or structures) enable to build reflection-free walls. Those layers absorb the wave incident to a surface, which is covered by

several dielectric  layers  of  properly  chosen  parameters,  without  exhibiting significant  reflections  (reflection  coefficient  approaches  zero).

Applications can be found in anechoic chambers or at military equipment, e.g.

The layered structures can provide a reflection-free transition of a wave from one media to another one (from air to water, e.g.) in the sense of

impedance matching. As a matching circuitry, a set of several dielectric layers, inserted between the media, can be considered. To this set of

applications,  dielectric radomes of antennas and HF devices belong.  The radome has to preserve the device mechanically,  but it  must not

influence the propagation of the electromagnetic wave.

In the following, we consider a normal incidence of waves with respect to the boundary among layers. The explanation is divided into two parts.

In the first part (layer A), phenomena inside the layered medium are observed (changes of intensities on boundaries and inside layers). In the

second part (layer B), the phenomena are investigated from the global point of view and parameters of the medium are computed in its whole.

In the layered medium,  multiple reflections and transmissions of waves on single boundaries can be observed.  Therefore,  important terms

related to the reflection and to the transmission are reminded.

perpendicular (horizontal) polarization parallel (vertical) polarization

Fig. 2.5A.1 Tangential components of total intensity on both the sides of the

boundary are the same. Vectors are depicted out of the boundary

for better readability.

Plane of boundary is a plane separating two media. Plane of incidence is perpendicular to the plane of boundary and is parallel to the direction

of the wave propagation. If the wave is of the perpendicular (horizontal) polarization, the vector E is perpendicular to the plane of incidence. If

the  wave  is  of  the  parallel (vertical)  polarization,  the  vector  E  is  parallel to  the  plane  of  incidence.  Orientation  of  vectors  for  both  the

polarizations depicted in fig. 2.5A.1. Plane of boundary is perpendicular to the plane of the screen. Plane of incidence is identical with the plane

of the screen.

Each point on the boundary has to be considered as two points in an infinitely short distance. The first point is in the first medium, the second

point belongs to the second medium. In each point in the plane of boundary, two various field intensities are therefore considered: E1, E2 and

H1, H2 - each one in another medium. However, every time the tangential components of electric field intensity and the normal components of

electric displacement density have to equal:

E1te č = E2te č,   ε1E1norm = ε2E2norm      (on plane of boundary) ( 2.5A.1 )

Similar relations are valid even for vector H  if no currents flow on the boundary.  From the basic boundary condition (2.5A.1a),  important

relations among intensities, which are depicted in fig. 2.5A.1, can be derived:

For perpendicular polarization:

Evnik = Edop + Eodr = Edop(1 + ρ⊥ ). ( 2.5A.2a )

For parallel one:

Evnik cos ψvnik = Edop cos ψdop − Eodr cos ψodr = Edop
⎛
⎝1 − ρ∥

⎞
⎠cos ψdop . ( 2.5A.2b )

The ρ⊥ and ρ| are reflection coefficients for the perpendicular polarization and the parallel one.

Generally,
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Fig. 2.5A.2 Layered medium

ρ =
Eodr
Edop

.

As already mentioned, we are going to deal with normal wave incidence to the boundary only. Reflection coefficients depend then on wave

impedances Z01 and Z02 of both media only

ρ⊥ =
Z02 −Z01
Z02 +Z01

,   ρ∥ =
Z01 −Z02
Z01 +Z02

= − ρ⊥ . ( 2.5A.3 )

Considering the normal incidence,  the difference between polarizations disappears.

Reflection coefficients differ in the sign, but the positive direction of Eodr differs in

the orientation on the other hand (see fig. 2.5A.1), and therefore, the result for both

polarizations is the same.

During the wave propagation in a layered medium, the same phenomenon repeats

many times: the wave transmits the boundary and then, it freely propagates through

the  dielectric  layer  towards  the  next  boundary.  From  the  physical  and  the

mathematical point of  view,  only two phenomena are needed to be managed: the

boundary transition and the layer propagation.

The explanation will be given for the situation, which is depicted in fig. 2.5A.2. Here,

three media 1 to 3 are shown. Their wave impedances Z0i = (µi / εi)
1/2 and wave

numbers ki = ω (µi εi)
1/2 are indexed the same way. The media are separated by two boundaries, which consist of two planes (A, B; C, D): one

of them is expected to be in the first medium and the second of them in the second medium. The wave propagates from left,  transits the

boundary perpendicularly,  and is perpendicularly polarized; vectors E  and H  are tangential to the boundary.  In the general case,  both the

forward wave and the backward one propagate in all the media, and therefore, the standing wave appears there. Intensities (E and H) of the

forward wave are denoted by the index p,  intensities of the backward wave by the index z. The other index specifies the position where the

intensity is measured. Total intensities do not contain any index (neither p nor z)

E = E(p) + E(z),   H = H (p) − H (z) ( 2.5A.4 )

(minus in (2.5A.4b) corresponds with fig. 2.5A.1). Considering the above-introduced notation, EB is total intensity on the boundary 1-2 in the

medium 2, EA
(z) is intensity of reflected wave on the same boundary but in the medium 1.

Analysis of the wave propagation in the layered medium can be performed using two approaches. The difference between approaches is formal,

but in given situations, it can influence the way of computing. No matter which approach is used, the analysis is done from the end of the

medium to its beginning (in the contra-direction of the forward-wave propagation).

The first approach is based on the boundary condition (2.5A.1). Total intensities on both sides of the boundary have to be the same. E.g., for

the boundary 2-3, we get:

E
C
(p)

+ E
C
(z)

= E
D
(p)

+ E
D
(z)

, ( 2.5A.5a )

H
C
(p)

− H
C
(z)

= HD
(p)

− HD
(z)

. ( 2.5A.5b )

In the second equation, we eliminate H substituting H(p) = E(p) / Z0, H(z) = E(z) / Z0 and we obtain two equations for EC
(p) and EC

(z), when

quantities in the third medium are considered as known (the analysis is performed from the end). These equations yield:
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⎡
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⎦⎥, ( 2.5A.6a )

E
C
(z)

=
1
2

⎡
⎣⎢E

D
(p)⎛

⎝⎜1 −
Z02
Z03

⎞
⎠⎟ + E

D
(z)⎛

⎝⎜1 +
Z02
Z03

⎞
⎠⎟
⎤
⎦⎥ =

1
2

⎡
⎣⎢
⎛
⎝⎜E

D
(p)

+ E
D
(z)⎞

⎠⎟ −
⎛
⎝⎜E

D
(p)

− E
D
(z)⎞

⎠⎟
Z02
Z03

⎤
⎦⎥. ( 2.5A.6b )

That way, the transition through the boundary is solved out. Dealing with the wave propagation inside a layer, well-known relations can be used:

EB
(p)

= E
C
(p)

exp(+ jk2d), ( 2.5A.7a )

EB
(z)

= E
C
(z)

exp(− jk2d). ( 2.5A.7b )

Here, d is thickness of the layer (in the first equation, we move in the contra-direction of the wave propagation, and therefore, the exponent

contains the sign 'plus'  in the second equation,  the situation is opposite).  Intensities E2
(p) and E2

(z) play the role of input quantities for the

foregoing boundary 1-2. During the analysis of the wave propagation in the layered medium, equations (2.5A.6) and (2.5A.7) are repetitively

applied (when indexes are properly changed).
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Whenever inside the layer, total field intensities can be computed substituting the coordinate of the observation point instead of the thickness d

to (2.5A.7). Subsequently, (2.5A.4) is used. Reflection coefficient and standing wave ratio (in an arbitrary point) can be computed as:

ρ =
E(z)

E(p)
,   PSV =

1+ ρ

1− ρ
. ( 2.5A.8 )

The question is,  why the analysis is performed from the end of the medium to its beginning when the field intensity is usually known at its

beginning. The reason is given by the physical matter of the fact. Relations in the medium depend on the ending of the medium. Eqns. (2.5A.6)

and (2.5A.7) formally enables us to perform the analysis from the beginning of the medium to its end, but in a real situation, even if the total

field intensity is known at the beginning, we are not able to decompose it to the forward-wave intensity and the backward-wave one. And both

these intensities play their roles in eqns.  (2.5A.6) and (2.5A.7).  On the contrary,  the situation at the end of the medium is quite different.

Eliminating special situations, the structure is usually ended by free space or perfectly conducting plane. In the case of free space, there is no

reflected wave at the end (E(z) = 0) and a single intensity E(p) has to be known for the computations. If the medium is ended by a conducting

wall, we know that E(z) = -E(p), and again, a single intensity has to be known. This intensity can elected as unitary one and the computation is

performed towards the known intensity at the input. Then, all the intensities are recomputed by a proper ration (all the relations are linear).

The second approach to the analysis of layered media is based on the transformation of reflection coefficient. This approach is well known from

the analysis of the cascade of transmission lines. In both the cases, the situation is quite the same: several lines (media), which are arranged into

the cascade, are of their own characteristic (wave) impedance Z0 and their own length (thickness) d. Voltages and currents on the transmission

line are related to field intensities E and H in an dielectric medium.

The solution consists of the following steps. First,  reflection coefficient on the last boundary in the last but one medium (see fig. 2.5A.2) is

computed:

ρC =
Z03 −Z02
Z03 +Z02

. ( 2.5A.9 )

Reflection coefficient is recomputed to the beginning of the last but one medium, to the plane B:

ρB = ρC exp(−2 jkd). ( 2.5A.10 )

In order to compute reflection coefficient on the plane A, impedance on the plane B has to be determined first:

ZB = Z02
1+ ρB
1− ρB

( 2.5A.11 )

and consequently, reflection coefficient on A can be obtained:

ρA =
ZB −Z01
ZB +Z01

. ( 2.5A.12 )

If the structure consists of more layers, then the described computations are repeated considering the proper exchange of indexes.

This part of the solution has to be again led from the end of the structure to its beginning. Field intensities can be computed then in an arbitrary

direction from a known intensity to unknown ones. If the total electric field intensity is known on the plane A (EA), e.g., we decompose it to the

intensities of the forward wave and the backward one first. Since

E
A
(p)

+ E
A
(z)

= E
A
(p)

+ ρA E
A
(p)

= EA ,

we get

E
A
(p)

=
EA

1+ ρA
,   E

A
(z)

= E
A
(p)

ρA . ( 2.5A.13 )

The same decomposition can be done in an arbitrary medium (layer) when properly changing indexes. In order to evaluate field intensities inside

the structure, the boundary condition (2.5A.1) and the expansion (2.5A.13) are applied. E.g.

EB = EA ,   E
B
(p)

=
EB

(1+ ρB)
,   E

B
(z)

= E
B
(p)

ρB.

Using (2.5A.7),  we  compute  EC
(p)  and  EC

(z)  and  consequently  the  final EC,  etc.  The  intensities  can  be  evaluated  using (after  a  small

rearrangement) equations (2.5A.5) or (2.5A.6).

Another way of the analysis of the layered medium is described in the layer B. In this part of the textbook, even more detailed information

about the application of layered structures is given.
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