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2.5 Wave propagation in layered media

Advanced theory

In the layer A, we introduced two approaches, which enable to solve electromagnetic wave propagation in a layered medium. The first approach

was based on the distribution of field intensities and on the basic boundary condition. The second approach was based on the transformation of

reflection coefficient and was identical with the method, which is used for solving similar tasks on transmission lines, in a fact. In this layer, we

are going to introduce another approach, which makes the solution more formal, and therefore, it is suitable for more complicated situations.

The  explanation  is  done  for  three  media  only  (two  boundaries).  The  situation  is

depicted in fig.  2.5B.1.  We can simply imagine multiple reflections appearing in the

structure. Therefore, there are an infinite number of waves propagating in each layer

in both directions. All the waves are coherent, and therefore, all the waves propagating

in a given direction interfere into a single harmonic wave. Hence, only two waves in

each medium are considered as depicted in fig. 2.5B.1. The media are denoted as 1,

2, and 3. Next, A is the surface of the boundary 1-2 in the medium 1; B is the surface

of the boundary 1-2 in the medium 2, etc. Using indexes A, B, C, D, we denote the

surface, where the intensity is computed, and using indexes in brackets (p),  (z),  we

denote  the  direction  of  propagation  (forward  wave,  backward  wave).  E.g.,  EB
(z)

denotes the intensity of the backward wave on the surface B, i.e. on the boundary 1-2

in the medium 2. The layered medium consists of boundaries and layers; we examine

separately the wave transition through the boundary and through the layer.

We consider the boundary 1-2 and express wave intensities, which travel outwards this boundary. The reflected wave of the intensity EA
(z) is

created by the reflection of the incident wave EA
(p), and by the transition of the wave EB

(z) from the medium 2 to the medium 1. Similarly, the

wave of the intensity EB
(p) is created by the transition of the wave EA

(p) from the medium 1 to the medium 2, and by the transition of the wave

EB
(z). This is expressed by the equation:

E
A
(z)

= ρ12E
A
(p)
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B
(z)

,   E
B
(p)

= τ12E
A
(p)

+ ρ21E
B
(z) ( 2.5B.1 )

where ρ12 is reflection coefficient of the wave propagation in the medium 1 and reflecting from the boundary with the medium 2, and ρ21 is

reflection coefficient of the wave propagating in the medium 2 and reflecting from the boundary with the medium 1. Similarly, coefficients of

transmission are indexed as τ12 and τ21. Eqn. (2.5B.1) can be rewritten to the matrix form:

[
EA

EB] = [
ρ12 τ21

τ12 ρ21] [
EB

EA]. ( 2.5B.2 )

The right-hand side matrix, which is composed of coefficients of reflection and transmission, is called the scattering matrix of the boundary. The

scattering matrix can  be  simply  built,  and  moreover,  their  elements  are  of  the  obvious  physical meaning (coefficients  of  reflection  and

transmission).  Unfortunately, eqn. (2.5B.2) is not suitable for the solution of the problem because intensities of input and output waves are

mixed in input and output column matrices. Eqn. (2.5B.2) is therefore solved for EA
(p) and EA

(z). Rearranging the relation, we consider ρ21 =

-ρ12 and τ12 τ21 - r12 ρ21 = 1. The result is expressed in the matrix form:
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. ( 2.5B.3 )

The right-hand matrix is called the cascade boundary matrix. The left-hand column matrix consists of input-wave intensities, and the right-hand

column matrix consists of output-wave intensities. The cascade matrix is suitable for cascade connection of elements (two-ports),  which are

present even in our task. If an arbitrary number of elements are connected into the cascade, then the cascade matrices are simply mutually

multiplied.

Now, the cascade matrix of the dielectric layer has to be derived. This aim can be met without any need for computing the scattering matrix. In

the dielectric layer, there are two traveling waves propagating in opposite directions. Obviously,

EB
(z) = EC

(z)exp(-jk2d),    EB
(p) = EC

(p)exp(+jk2d), and therefore
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where k2 is wave number in the second medium.

In the system of plan-parallel layers, single boundaries and layers are lined in parallel way. The final equation can be therefore obtained by

multiplying respective matrices. For the situation from fig. 2.5B.1, we get:
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The final result supposes a traveling wave in the third medium. In the opposite case, the intensity ED
(z) appears in the last column matrix. The

way of extending the principle to an arbitrary number of layers is obvious.

Rewriting (2.5B.5), we get:
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. ( 2.5B.6 )

The  ratio  EA
(z)/  EA

(p)  gives  the  real value  of  the  reflection  coefficient  on  the  boundary 1-2.  The  ratio  ED
(p)/  EA

(p)  equals  to  the  total

transmission coefficient. Both the quantities can be computed using the last equations.

Let us note that in the case of the normal incidence of a perpendicularly polarized wave to a single boundary (no reflected wave can exists

behind that), following relations are valid for the reflection coefficient and the transmission one:

ρ⊥ =
Z02 −Z01
Z02 +Z01

,   τ⊥ = 1 + ρ⊥ =
2Z02

Z02 +Z01
. ( 2.5B.7 )

The described method is suitable for more complicated structures.  Common tasks can be numerically solved using Smith chart or directly

considering boundary conditions on the boundary (see layer A.)

As already mentioned in the introduction, provision of the reflection-free transition of the electromagnetic wave from one medium to another

one is an example of the application of layered media. Such requirement can appear when exciting waves in the ground or in the other media,

when exciting waves in human body, at dielectric radomes of antennas, etc.; the wave is required to enter the medium and to exit it with the

same intensity and the same equiphase surface. Covering the boundary between the media by one or several dielectric layers of exactly given

permittivity  and  thickness  can fulfill the  requirement.  The layers  play  the  role  of  the  matching circuitry  (transformer)  in  analogy  to  the

transmission line. In both the cases, electromagnetic wave propagates in the structure. On the transmission line, voltages and currents represent

the wave. In the dielectric layer, the wave is represented by electric-field intensity and magnetic-field intensity. Voltage U corresponds to electric

intensity E, and current I corresponds to magnetic intensity H. Characteristic impedance of the transmission line corresponds to wave impedance

of the medium (layer).  The difference between the above-described cases is hidden in the structure of  circuits.  On the transmission line,

matching circuitry could consist not only of cascade-connected segments of the transmission line but too of parallel or serial shunts. Matching

layers can be connected in cascade only. The reason for that is fundamental. In the part of the transmission line, where the parallel reactance is

connected, a current jump appears (a part of current flows to the reactance). In the layered equivalent, a jump of magnetic-field intensity should

appear in the respective part of the boundary. This is impossible from the physical point of view (it contradicts the basic boundary condition). In

general, jump of magnetic-field intensity H can appear on the boundary if electric current is admitted. Then, the boundary condition is of the

form n × H1 = K + n × H2.  Indexes distinguish between the first medium and the second one,  vector products of the normal n result in

tangential components and K [A m-1] is surface density of electric current on the boundary. In practical life, this solution can be used. However,

the elected technology has to admit the flow of electric currents on the surface of the boundary.

Routinely, we can design matching circuits consisting of a single one-quarter-wavelength thick dielectric layer or of a first dielectric layer of a

given thickness plus of a second one, which is one-quarter-wavelength thick. No matter whether segments of the transmission line or dielectric

layers are used. If efficient, Smith chart can be used.

The above-described matching circuits can be modeled by the computer program, which is described in the layer C. The program cannot be

used for the design of those circuits, it analyses a circuitry of given parameters (permittivity, thickness of layers) and computes the distribution

of E and H in layers, reflection coefficient and standing wave ratio in various points of the structure. Observing numerical values, the circuit

operation can be investigated. The matching circuits can consists of up to four dielectric layers. The operation of the circuitry can be observed in

a wider frequency band.

Frequency filters are another application area of layered media. As a basic element, the half-wavelength-thick dielectric layer is used. This layer

(in analogy with the half-wavelength-long transmission line) transforms intensities and impedances in the ratio 1:1.  Other words,  the wave

reflected at the beginning of the layer cancels out with the wave reflected from the end of layer. If the incident wave is of different frequency

(the  layer  is  not  half-wavelength thick),  the  total cancellation  does  not  appear.  The layer  reflects  the  part  of  energy,  and  therefore,  the

transmitted energy is lower. In front of the layer, the standing wave appears.

In the practical life, filters are composed of several half-wavelength-thick layers, which are mutually separated by layers of another permittivity
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and thickness (l/4, e.g.).

Properties  of  layered  structures  as  filters  can  be  demonstrated  by another  program in  the  layer C.  In  this  layer,  even the  more detailed

description of the program is given.
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