
Fig. 3.2B.1 Shielded microstrip

transmission line

(longitudinally

homogenous)

3.2 Shielded microstrip tranmission lines

Advanced theory

In  this  paragraph,  we  turn  our  attention  to  the  computational  details  of  the  analysis  of

electromagnetic field distribution in a shielded microstrip transmission line (fig. 3.2B.1) assuming

constant parameters along the longitudinal axis. Then, only a two-dimensional structure has to be

analyzed (cross-section of the transmission line),  which simplifies  computations [20].  For the

analysis, a full-wave method, a finite-element method is exploited.

As already described in layer A, the analysis is based on Maxwell equations in differential form.

Sources of electromagnetic waves are assumed to be in long distance from the region of analysis

(then, imposed currents Js are zero in this region). Charge density r in dielectrics, which surround

the  microstrip,  is  supposed  to  be  zero.  Dielectrics  is  expected  to  be  isotropic  and  linear

(permittivity and permeability are scalar quantities, which values do not depend on the value of

respective intensity) and to exhibit electric losses (represented by electric conductivity s). All the

metallic parts (shielding waveguide, microstrip) are assumed to be perfect electric conductors.

The analyzed microstrip transmission line is placed to Cartesian coordinate system (coordinates x

and y in transversal directions, coordinate z in longitudinal one). Then, the wave can be said to propagate in the longitudinal direction z (along

the microstrip), and the electric-field intensity vector depends on the longitudinal coordinate by the following way:

E(x, y, z) = E(x, y)exp(−γz). ( 3.2B.1 )

Here, γ is the propagation constant.

Expressing all vectors as a sum of the transversal vector (index t) and the longitudinal one (index z), we get

∇t ×(∇t ×Et) − γ(∇t Ez + γEt) = k0
2 µrεr̃Et , ( 3.2B.2a )

∇t ×[(∇t Ez + γEt)×z0] = k0
2 µrεr̃Ez z0 . ( 3.2B.2b )

Whereas (3.2B.2a) is vector equation for transversal components, (3.2B.2b) is scalar equation for longitudinal components. In those relations,

∇t is a transversal operator nabla, Et is transversal electric-field intensity vector, γ is propagation constant, Ez denotes longitudinal component

of electric-field intensity, k0 is wave number in vacuum, µr denotes relative permeability inside structure, ε~
r is complex relative permittivity

inside structure and z0 denotes unitary vector in the longitudinal direction.

The set of differential equations (3.2B.2) has to be completed by boundary conditions, which have to be met by the solution of (3.2B.2)

n0×Et = 0

Ez = 0}na  Γ1 , (3.2B.3a )

[∇t Ez + γEt] ⋅n0 = 0

∇t ×Et = 0}na   Γ2. ( 3.2B.3b )

Eqns. (3.2B.2) completed by boundary conditions (3.2B.3) are initial relations for the full-wave analysis of the shielded microstrip transmission

line. Unfortunately, the set (3.2B.2), (3.2B.3) includes the first Maxwell equation and the second one only. In order to meet the third Maxwell

equation and the fourth one, the analysis has to be based on hybrid finite elements.

If the shielded microstrip transmission line is analyzed exploiting hybrid finite elements, all components of electric-field intensity vector or all

components of magnetic-field one have to be included in computations. Eqn. (3.2B.2) stays the initial relation of the analysis.
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Fig. 3.2B.2 Mesh examples of rectangular

bi-elements for the analysis of a

shielded microstrip transmission line

The  matter  of  hybrid  finite  elements  consists  in  modeling the  longitudinal

component of field intensity exploiting nodal approximation and in modeling

transversal components using edge vectors.

The first step of the finite-element method consists in dividing the analyzed

structure  (cross-section  of  the  transmission  line)  to  finite  elements

(non-overlapping sub-regions,  which  contain  all the  points  of  the  analyzed

structure). In the area of a finite element, parameters of the analyzed structure

(permittivity,  permeability,  conductivity)  have to be constant.  There  are  no

restrictions to  shape and dimensions  of  finite  elements.  Examples  of  finite-

element meshes are depicted in fig. 3.2B.2.

In the second step of the solution, the distribution of a computed quantity is

approximated over each finite element in a formal way. The approximation is

expressed as a linear combination of elected partial approximation functions

and unknown approximation coefficients.

Analyzing the shielded microstrip transmission line, a formal approximation of

a scalar  function Ez  = Ez(x,  y)  and a vector one Et  = Et(x,  y)  have to be

expressed. Let us start with the scalar function.

The  global approximation  of  the  scalar  function  Ez  over the whole  cross-

section  of  the  transmission  line  is  composed  of  local approximations  over

single finite elements.

Local approximation of the longitudinal component of electric-field intensity vector over a finite element is expressed as a linear combination of

elected partial approximation functions and unknown approximation coefficients. Considering linear approximation, the approximation plane over

a finite element is composed of three partial approximation planes. Each partial approximation plane is unitary in a unique vertex of the triangle

and is zero in the other two vertexes (see fig.  3.2B.3).  Coefficients cn  at partial functions in the linear combination play the role of spatial

samples of the computed function in vertexes of the finite element (fig. 3.2B.3). Vertexes of the finite element are called nodes and respective

functional values are called nodal values.

Fig. 3.2B.3 Linear approximation of E over finite element. Composed of three shape functions

Partial approximation functions are called shape functions.  All the shape functions,  which are unitary in the same node (see fig.  3.2B.4),

compose together a basis function.

Fig. 3.2B.4 Linear basis function related

to m-th node

In many cases, approximation functions of higher order are more suitable than the linear function. Although the triangular element has to contain

more nodes (6 for quadratic approximation,  10 for cubic one,  etc.),  the same error comparing to linear approximation is  reached even if

significantly lower number of finite elements is exploited. Approximation functions of higher order are smoother, and therefore, they represent
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better natural quantities.

Fig. 3.2B.5 Two-dimensional simplex

coordinates

Now, we are familiar with shape functions, and therefore, we can find their proper mathematical representation. For this purpose, Lagrange

polynomials expressed in simplex coordinates [21] are usually used.

What does the term simplex coordinates mean? Considering triangular finite elements, simplex coordinate axes are of the direction of heights of

the triangle. Simplex coordinates are unitary in the vertex and are zero on the opposite edge. Simplex coordinate do not depend neither on the

shape nor on the dimensions of the finite element, and therefore, all the computations are sufficient to be performed once for a single finite

element, and the results are recomputed for the other elements only.

Dealing with physical matter of simplex coordinates,  a general point P  inside a triangular finite element divides its surface to three partial

triangles (fig. 3.2B.6).  The ratio of the surface of a triangle, which is positioned in front of the first node, to the surface of the whole finite

element equals to the simplex coordinate of P on the first simplex axis

ξ1 =
σ(S1)
σ(S)

. ( 3.2B.4 )

For other simplex coordinate axes, the situation is similar. In eqn. (3.2B.4), σ(S1) denotes surface of the partial triangle, which is positioned in

front of the first node, and σ(S) is surface of the whole finite element. Obviously, addition of all three simplex coordinates in an arbitrary point is

unitary

Fig. 3.2B.6 Matter of simplex

coordinates

ξ1 + ξ2 + ξ3 = 1. ( 3.2B.5 )

As shown in [21], this conclusion can be generalized for an arbitrary dimension and for an arbitrary order of an approximation polynomial.

Now, we turn our attention to Lagrange interpolation polynomials.

Lagrange polynomial of nthcan be expressed (using simplex coordinate x) as

Rm(n, ξ) =
1

m !
∏

k =0

m −1
(nξ − k) m ≥ 1 R0(n, ξ) = 1.

( 3.2B.6 )

Here, n is order of the approximation polynomial. Eqn. (3.2B.6) describes the whole family of polynomials: family members differ in the index

m, which can vary from zero to the order of polynomial n.
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Fig. 3.2B.8 One-dimensional finite

element, its simplex

coordinates and indexes of

Lagrange polynomials

Fig. 3.2B.7 Family of Lagrange polynomials of 2nd order

Nulls of polynomials Rm(n) are equidistantly placed on coordinates ξ= 0, 1/n till (m-1)/n, the polynomial is of unitary value in ξ = m/n. Hence,

Rm(n) is of m equidistantly placed nulls at the left from the coordinate ξ = m/n and of zero nulls at the right.

The above-given statement is illustrated by fig. 3.2B.7, where all the members of the family of quadratic polynomials R(2) are depicted. Figure

demonstrates the above-described equidistant distribution of nulls. The family member of index 0, i.e. R0(2), does not have any null at the left

from the coordinate 0 and is of unitary value at the coordinate 0. The family member of index 1, i.e. R1(2), is of single null at the coordinate 0

and is unitary at 1/2. Finally, the family member of index 2, i.e. R2(2), is of nulls at coordinates 0 and 1/2 and is unitary at the coordinate 1.

Using  Lagrange  polynomials,  we  compose  quadratic  shape  functions  for

one-dimensional finite element. Simplex coordinate ξ1 is oriented from left to right on

this element, the coordinate ξ2 goes from the right to the left (fig. 3.2B.8). The shape

function related to the node 1 (unitary value in the node 1, zero value in the nodes 2

and 3) is then composed by multiplying Lagrange polynomial of variable ξ1 and index

0 (constant function of value 1) by Lagrange polynomial of variable ξ2 and index 2

(since the coordinate ξ2 is oriented fro the right to the left, the course of the function

R2(2) from fig. 3.2B.7 has to be reverted).

Similarly,  shape  functions  for  nodes  2 and  3 can  be  composed.  For  the  node 2,

Lagrange polynomials of variables ξ1 and ξ2and of index 1 are mutually multiplied.

For  the  node 3,  Lagrange  polynomial of  variable  ξ1  and  index 2 is  multiplied  by

Lagrange polynomial of  variable ξ2 and index 0.  Indexes of Lagrange polynomials,

which form shape functions of respective nodes, are written at these nodes (fig. 3.2B.8) in the form of a fraction; numerator is an index of

Lagrange polynomial of the coordinate ξ1 and denominator is an index of Lagrange polynomial of the coordinate ξ2.  Adding numerator and

denominator, order of approximation polynomial n has to be obtained.

In general, the shape function of the node (i, j) of a one-dimensional finite element can be expressed as

αi j = Ri(n, ξ1)Rj(n, ξ2) i + j = n, ( 3.2B.7a )

here n is order of an approximation polynomial, R denotes Lagrange polynomials defined by eqn. (3.2B.5) and ξ are simplex coordinates.

In the next step, we turn our attention to a two-dimensional finite element. The only change, which has to be done, is adding a new simplex

coordinate ξ3 to two existing coordinates ξ1 and ξ2. Two multiplicands, which appear in relations for shape functions of a one-dimensional finite

element, are completed by the third multiplicand, corresponding to Lagrange polynomial of a new simplex coordinate ξ3

αi jk = Ri(n, ξ1)Rj(n, ξ2)Rk (n, ξ3) i + j + k = n. ( 3.2B.7b )

Here,  ξ1,  ξ2 and ξ3 denote simplex coordinates of a two-dimensional finite element,  n  is order of an approximation polynomial and R  are

Lagrange polynomials.

Substituting to (3.2B.6) a (3.2B.7), we get for linear approximation the following shape functions

α100 = N
1
(n)

= ξ1 ,   α010 = N
2
(n)

= ξ2,   α001 = N
3
(n)

= ξ3. ( 3.2B.8 )

Now,  we  are  familiar  with  basis  functions  for  the  approximation  of  a  scalar  function  Ez.  Therefore,  we  can  turn  our  attention  to  the

approximation of vector function Et. The approximation of a vector function formally corresponds to the approximation of a scalar function;
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only basis functions are of vector nature

E
t
(n)

= N
t,01
(n)

e
t,01
(n)

+ N
t,12
(n)

e
t,12
(n)

+ N
t,20
(n)

e
t,20
(n)

= ∑
i, j

N
t, i j
(n)

et, i j
(n)

. ( 3.2B.9 )

Fig. 3.2B.9 To the explanation of behavior of

vector shape function; for

simplicity, superscripts (n) are

missed

In eqn.  (3.2B.9) et,01
(n)  denotes the edge approximation coefficient for the approximation of the distribution of transversal components of

electric-field intensity vector,  which is related to the edge 0-1 of nth finite element.  Next,  Nt,01
(n)  denotes vector shape function,  which is

multiplied by the edge coefficient 0-1 in order to evaluate submission of this coefficient to the approximation of the distribution of transversal

electric-field intensity vector over nth finite element. Similar situation can be observed at the other two vector shape functions.

The vector shape function can be expressed as

N
t, i j
(n)

= − ξi

l
k, i
(n)

2A(n)
n

k, i

(n)
+ ξj

l
j, k
(n)

2A(n)
n

j, k

(n)
. ( 3.2B.10 )

Here, A(n) denotes surface of nth finite element, lk,i
(n) is the length of the edge k-i  of nth finite element, nk ,i

(n) is the normal to the edge k-i  of

nth finite element and ξi is a classic simplex coordinate, which is unitary in node i and which is zero in the opposite edge. The meaning of the

rest of symbols is similar.

Let us observe behavior of the shape function (2.3B.10) in node 0. Here, the simplex coordinate ξ0 is of unitary value and ξ1 is zero. In node 0,

the shape function (2.3B.10) is perpendicular to the edge 2-0 and is oriented inside the finite element (due to the negative sign). Its magnitude

equals to the reverse value of the height v20.In node 1, shape function is of the direction of the normal to the edge 1-2 and its magnitude equals

to the reverse value of the height v01.  Moving from node 0 to node 1 along the edge 0-1,  the direction of the shape function (2.3B.10)

continuously changes from – n01
(n) to +n12

(n) and its magnitude changes from the value (1/v20) to (1/v01). Since the shape function (2.3B.10)

does not depend on the coordinate ξ2, the described behavior is the same along all the parallels of the edge 0-1.

Now, all the components of the electric-field intensity vector are approximated in a formal way. Therefore, the next step of the finite-element

method can be done: the formal approximation is substituted to the solved equation, and an approximation error (the difference between the

approximate solution and the exact one) is minimized. Performing these steps, we obtain the final matrix equation:

⎡

⎣

⎢
⎢
⎢

S
t
(n)

− k0
2 µr

(n)
ε̃r

(n)
T

t
(n)

0

0 0

⎤

⎦

⎥
⎥
⎥
 

⎡

⎣

⎢
⎢
⎢
⎢

E
t
(n)

Ez
(n)

⎤

⎦

⎥
⎥
⎥
⎥

= γ2

⎡

⎣

⎢
⎢
⎢
⎢

T
t
(n)

G(n)

G(n)T
Sz

(n)
− k0

2 µr
(n)

ε̃r
(n)

Tz
(n)

⎤

⎦

⎥
⎥
⎥
⎥
 

⎡

⎣

⎢
⎢
⎢
⎢

Et
(n)

Ez
(n)

⎤

⎦

⎥
⎥
⎥
⎥
,

where

T
t
(n)

E
t
(n)

= ∑
i, j

⎧
⎨
⎩
⎪
⎪

et, i j
(n) ∬

S (n)

⎡
⎣⎢Nt, rs

(n) ⋅N
t, i j
(n)⎤

⎦⎥dS

⎫
⎬
⎭
⎪
⎪

, ( 3.2B.11a )

G(n) Ez
(n)

= ∑
m

⎧
⎨
⎩
⎪
⎪

ez, m
(n) ∬

S (n)

⎡
⎣⎢Nt, rs

(n) ⋅
⎛
⎝⎜∇t Nz, m

(n)⎞
⎠⎟
⎤
⎦⎥dS

⎫
⎬
⎭
⎪
⎪

, ( 3.2B.11b )

Sz
(n)

Ez
(n)

= ∑
m

⎧
⎨
⎩
⎪
⎪

ez, m
(n)
∬

S (n)

⎡
⎣⎢
⎛
⎝⎜∇t Nz, q

(n)⎞
⎠⎟ ⋅

⎛
⎝⎜∇t Nz, m

(n)⎞
⎠⎟
⎤
⎦⎥ dS

⎫
⎬
⎭
⎪
⎪

, ( 3.2B.11c )
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Tz
(n)

Ez
(n)

= ∑
m

⎧
⎨
⎩

⎪
⎪

ez, m
(n) ∬

S (n)

⎡
⎣⎢Nz, q

(n)
Nz, m

(n)⎤
⎦⎥ dS

⎫
⎬
⎭

⎪
⎪

, ( 3.2B.11d )

S
t
(n)

E
t
(n)

= ∑
i, j

⎧
⎨
⎩
⎪
⎪

et, i j
(n) ∬

S (n)

⎡
⎣⎢
⎛
⎝⎜∇t ×N

t, rs
(n)⎞

⎠⎟ ⋅
⎛
⎝⎜∇t ×N

t, i j
(n)⎞

⎠⎟
⎤
⎦⎥dS

⎫
⎬
⎭
⎪
⎪

. ( 3.2B.11e )

In the above-given relations, Et
(n) is column vector of three unknown edge approximation coefficient (related to the approximation of transversal

components of electric-field intensity vector) over nth finite element and Ez
(n) denotes column vector of three unknown nodal approximation

coefficients (related to the approximation of longitudinal component of electric-field intensity vector) over nth finite element. Next, γ denotes

complex propagation constant propagation constant, k0 is wave number in vacuum, µr
(n) is relative permeability of nth finite element and ε~

r
(n) is

complex relative permittivity of the same element. Symbol dS denotes elementary facet for the integration over nth finite element and S(n) is the

total surface of nth finite element. Summation over the index mrepresents addition over all nodes of the finite element (i.e., m = 0, 1, 2) and

summation over indexes i,  j  represents addition over all edges of the element (i.e.,  i,  j  = 0-1,  1-2,  2-0).  Symbols et,  ij
(n)  represent  edge

approximation coefficients, symbols ez, m
(n) represent nodal approximation coefficients.

Matrices Tt
(n), G(n), Sz

(n), Tz
(n) and Tt

(n) are matrices of coefficients of nth finite element of the size 3 x 3. Elements of the above-described

matrices were computed by the integration of the product of basic functions and weighting ones (or their derivatives) over nth finite element (in

simplex coordinates, of course). Those matrices can be evaluated exploiting the following relations:

S
t
(n)

=
1

A(n)

⎡

⎣

⎢
⎢
⎢

1 1 1

1 1 1

1 1 1

⎤

⎦

⎥
⎥
⎥
, ( 3.2B.12a )

T
t
(n)

=
1

12
∑

i = 0

2
Qi cotg

⎡
⎣⎢θi

(n)⎤
⎦⎥,

( 3.2B.12b )

G(n) =
1
6

∑
i = 0

2
Ci cotg

⎡
⎣⎢θi

(n)⎤
⎦⎥,

( 3.2B.12c )

Sz
(n)

=
1
2

∑
i= 0

2
Di cotg

⎡
⎣⎢θi

(n)⎤
⎦⎥,

( 3.2B.12d )

Tz
(n)

=
A(n)

12

⎡

⎣

⎢
⎢
⎢

2 1 1

1 2 1

1 1 2

⎤

⎦

⎥
⎥
⎥
, ( 3.2B.12e )

where

Q0 =

⎡

⎣

⎢
⎢
⎢

3 −1 −1

−1 1 1

−1 1 1

⎤

⎦

⎥
⎥
⎥
,  Q1 =

⎡

⎣

⎢
⎢
⎢

1 −1 1

−1 3 −1

1 −1 1

⎤

⎦

⎥
⎥
⎥
,  Q2 =

⎡

⎣

⎢
⎢
⎢

1 1 −1

1 1 −1

−1 −1 3

⎤

⎦

⎥
⎥
⎥
,

C0 =

⎡

⎣

⎢
⎢
⎢

0 −2 2

0 1 −1

0 1 −1

⎤

⎦

⎥
⎥
⎥
,  C1 =

⎡

⎣

⎢
⎢
⎢

−1 0 1

2 0 −2

−1 0 1

⎤

⎦

⎥
⎥
⎥
,  C2 =

⎡

⎣

⎢
⎢
⎢

1 −1 0

1 −1 0

−2 2 0

⎤

⎦

⎥
⎥
⎥
,

D0 =

⎡

⎣

⎢
⎢
⎢

0 0 0

0 1 −1

0 −1 1

⎤

⎦

⎥
⎥
⎥
,  D1 =

⎡

⎣

⎢
⎢
⎢

1 0 −1

0 0 0

−1 0 1

⎤

⎦

⎥
⎥
⎥
,  D2 =

⎡

⎣

⎢
⎢
⎢

1 −1 0

−1 1 0

0 0 0

⎤

⎦

⎥
⎥
⎥
,

A(n) is surface of nth finite element and θi
(n) is angle at ith vertex of nth finite element. The above-given relations are valid for the following

organization of nodes and edges:

E(n) = [ e
z,0
(n)

e
z,1
(n)

e
z,2
(n)

e
t,12
(n)

e
t,20
(n)

e
t,01
(n) ]

T

. ( 3.2B.12f )

Solving the  matrix equation  for  the  vector  of  unknown approximation  coefficients,  the  solution  of  the  problem is  obtained.  Substituting

approximation coefficients to the formal approximation, a real approximation of a sought function in every point of nth finite element is obtained.

Associating approximations over all finite elements, a global approximation of the solution of the partial differential equation in all the points of

the analyzed structure is found.
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In layer C, a matlab program analyzing a shielded microstrip transmission line by the described finite-element method is introduced. A practical

programmer's description is given in the layer D.
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