
Fig. 4.2B.1 Field intensities on

the surface of

antenna wire

4.2 Mutual impedance

Advanced theory

Radiation impedance ZΣvst on the input port of the antenna can be computed from the value of complex power PΣ which is radiated by the

antenna, when dividing power by input current | Ivst |
2 of the antenna (eqn. 4.2A.1 in the layer A). Hence, turn our attention to computing the

radiated power.

During the process of the radiation of electromagnetic waves, energy delivered to the lossless antenna in free space is transformed to the energy

of electromagnetic wave, which propagates in free space, and to the energy, which is periodically exchanged between the antenna and the near

field of the antenna. The radiated power PΣ (complex, in general) can be computed integrating Poynting vector along the closed surface around

the antenna. The obtained result is influenced by the selection of the region where the integration is performed.

In the far-field zone (radiation zone),  electric field intensity E and magnetic field one H of the radiated electromagnetic wave are in phase.

Poynting vector is purely real, and performing its integration along the closed surface (usually a sphere with the center in the antenna), a purely

real power PΣ is obtained. Dividing the power by squared input current Ivst, the real part of the radiation impedance RΣvst is obtained.

Computing complex radiated power PΣ,  integration of Poynting vector has to be performed in

immediate vicinity of the antenna (in case of linear antennas, we integrate along the surface of the

antenna wire). Let us start with radiation of a symmetrical dipole of the length 2l and of the radius

of antenna wire 2a, which is placed to the coordinate system as depicted in fig. 4.2B.1.  On the

surface of the cylindrical antenna wire, the current I(z) excites a longitudinal component of electric

field intensity Ez(z) and a transversal tangential component of magnetic field intensity Hφ(z).

Magnetic field intensity Hφ(z) on the surface of a relatively thin wire is primarily determined by

the current I(z) in the immediate vicinity of the element dz. Applying Amper low, we get

Hφ(z) =
I(z)
2πa

. ( 4.2B.1 )

Electric field intensity Ez(z) on the surface of the antenna wire can be expressed in term of vector

potential Az(z) considering a known current distribution I(z)

Az(z) =
µ

4π

⌠
⌡
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− l
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+ a2√ .

( 4.2B.2 )

Electric field intensity Ez(z) equals then to

Ez(z) = − jω
⎛
⎝⎜Az +

1

k 2
gradzdiv(Az)⎞

⎠⎟ = − jω(Az +
1
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∂2 Az

∂ z2 ). ( 4.2B.3 )

If the radius of the antenna wire a is significantly smaller than its length 2l, and if radiation of the wire ends is neglected, Poynting vector is of

the radial component only

Π = − Ez(z)Hφ
∗(z). ( 4.2B.4 )

An element of the wire surface dS = 2π and dz radiates then the power

dPΣ = Π2πa dz = − Ez(z)Iz
∗(z) dz, ( 4.2B.5 )

where asterisk denotes complex conjunction.

Complex power radiated by the whole antenna PΣ is obtained integrating along the whole dipole

PΣ = ⌠
⌡
−l

l

dPΣ = − ⌠
⌡
− l

l

Ez(z)Iz
∗(z) dz. ( 4.2B.6 )

Components of radiation impedance ZΣvst on the input port of the antenna can be obtained when dividing the power PΣ  by squared input

current Ivst
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Fig. 4.2B.2 Substition of antenna feeding for

current distribution I'(z)

ZΣvst = −
1

||Ivst ||
2

⌠⌡
− l

l

Ez(z)I1
∗(z) dz. ( 4.2B.7 )

The described approach is formally simple, but solving a given problem, evaluation of integrals is rather problematic. The main advantage of this

approach is given by the possibility to compute impedances of elements in an antenna array as shown in the layer A.

Now, turn our attention to a small detail of the approach. We should disagree with the orientation of the vector Π in fig. 4.2B.1, which does not

correspond to the clockwise system E x H. Moreover, the cause of the sign "minus" in eqn. (4.2B.4) is not clear. Maybe, we may argue that the

opposite orientation and the opposite sign can mutually compensate. Next, the reader can ask why antennas are fabricated from well-conductive

metals: using perfect conductors, tangential component of electric field intensity vanishes, value of Π is zero and such a perfect antenna does not

radiate. Hence, more detailed attention to the above-described approach is demanded.

Let us start with the zero tangential electric field component and assume perfect conductivity of the antenna wire. If our computations consider

an exact current distribution then zero tangential electric field component is obtained everywhere on the surface of the antenna wire except of

the infinitesimally short excitation gap at z = 0. Understanding Poynting vector as a surface power density,  antenna seems to radiate in the

excitation gap only.

Finite conductivity of real metals does not change anything on this fact. Tangential component on the surface is not indeed zero, but the real

power penetrating inside  the conductor is relatively small (this power is converted to heat in the conductor).  The only region,  where real

component of Poynting vector is directed out of the antenna, is the feeding gap.

This conclusion seems to be rather surprising and might to invoke doubts. At least,  this conclusion does not correspond to the notion of an

antenna as a set of radiating elementary dipoles. Fortunately, these problems can be relatively simply solved.

First, nothing proves the fact that the antenna radiates in the feeding gap only. Poynting theorem says only that integrating the product Et(z)

H(z) along the closed surface equals to the total incoming power.  Meaning of the surface power density is only attributed to this product

because it can be usually done. Therefore, no contradiction with respect to the theory is revealed. Moreover, there is no need for asking the

question where the power is radiated, and the so-far notions can be kept.

Even from the mathematical point of view, no serious problems appear. Due to the practical reasons, computations are not performed with an

exact current distribution I(z) but with the approximate one I'(z) (of sine nature, usually). Even a small difference between I(z) and I '(z) causes

the tangential component of electric field intensity to differ from zero on the surface of the antenna wire,  and the integral (4.2B.6) can be

evaluated. Computations can be therefore performed using an approximate current distribution I'(z).  Satisfactory correctness of the approach

can be proven following A. A. Pistolkors:

The  real antenna  (symmetric  dipole)  is  depicted  in  fig.  4.2B.2a.  The  antenna  is

fabricated from a perfect conductor, the current distribution is given by I(z) and on

the whole surface (except of the excitation gap) the tangential component of electric

field  intensity  equals  to  zero.  Since  an  approximate  current  distribution  I'(z)  is

considered in computations, Et differing from zero is obtained, and consequently, a

certain radiated power is computed.

In  order  to  prove  the  computed  power  being approximately  equal to  the  really

radiated power, we can imagine to analyze an imaginary antenna of the same shape

and  the  same  dimensions  as  the  real antenna  but  of  I'(z)  as  an  exact  current

distribution. Then the imaginary antenna has to be fed by a different way. We have

to  admit  the  excitation  consisting of  a  vertical row  of  elementary  sources  (fig.

4.2B.2b),  which voltages are  set  to  enforce  the  current  distribution following the

function I'(z).  The fact  that the tangential component of  electric field intensity is

non-zero  on  the  surface  of  the  imaginary  antenna  is  correct  because  the  whole

surface of the imaginary antenna is covered by excitation gaps. The power we have

computed is valid for our imaginary antenna. If the difference between I(z) and I'(z)

is  small,  then  the  computed  power  approaches  the  power  radiated  by  the  real

antenna.

Finishing our discussion, we can go back to the basic idea.

In the set of parallel dipoles (fig. 4.2A.1 in the layer A), the power radiated by the first element of the array is expressed first. The total electric

field intensity Ez1(z) on the surface of the first element equals to the sum of contributions of all the elements of the array

Ez1(z) = E11(z) + E12(z) + …… + E1n(z). ( 4.2B.8 )
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Power PΣ1 radiated by the first element is obtained when substituting to eqn. (4.2B.6). Formal rearrangement yields the relation

PΣ1 = − ⌠⌡
− l
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( 4.2B.9 )

Integrals

Z jk =
⌠
⌡
⎮⎮
−l

l

E jk (z)
Ivstk

Ij
∗(z)

Ivst j
∗ ( 4.2B.10 )

are called mutual impedances and are given in Ohms. Thanks to the formal rearrangement, integrals (4.2B.10) do not depend on the magnitudes

of currents in  antenna elements because the field intensity  Ejk  excited on the surface of j-th element by the  radiation of k-th element is

proportional to the current Ivst k  in k-th element of the antenna array.

For parallel dipoles, results of the integration in (4.2B.10) are expressed in the form of tabulated functions (integral sine, integral cosine). In

order to get numerical values of mutual impedance components Zjk, computer program described in the layer C can be used. Results describe

coupling between the couple of parallel dipoles of the same length 2l, which is related to the maximal current Imax. Values Zjk  vst, which are

related to the input current of the dipole, are obtained performing re-computing according to eqn. (4.2A.4) in the layer A.

Dependency of the magnitude of the components of mutual impedance on the distance between dipoles was already demonstrated in the layer A

(fig. 4.2A.2) for the couple of parallel symmetric dipoles with a standing current way. Negative values of the mutual impedances Rjk  and Xjk

express the fact that for a given spatial arrangement, radiation of k-th element reduces the magnitude of real or imaginary part of the power PΣj

which is  radiated by j-th element of  the antenna array.  Decreasing magnitude of mutual impedance for long distances corresponds to the

decrease of the electric field intensity Ejk  for increasing distance.

Exploiting eqn. (4.2B.10), self-impedance of a stand-alone antenna element Zjj can be computed if the distance between elements d is set to the

value of the radius of the antenna wire a.  This approach corresponds to the situation described when deriving eqn. (4.2B.7): we considered

electric field intensity on he surface of j-th antenna wire Ejj excited by a current flowing through the axis of the same wire.

The method of induced electromotoric forces enables to compute the radiated power, and consequently the values of mutual impedances even

in the case of non-parallel antenna wires. Then, we have to respect a different spatial orientation of vectors of electric field intensity Ejk  with

respect to the surface of j-th antenna wire. Decomposing vector Ejk  to respective components and exploiting more general expression for the

power contribution dPΣ, we obtain formally more complicated relations. That way, coupling between crossed wires of a turnstile antenna and

further situations can be solved.
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