
Fig. 4.5B.1 Coordinate system for computing

contributions of elementary current

(resp. charge) elements

4.5 Microstrip antenna

Advanced theory

In this paragraph,  two-dimensional moment analysis of a patch antenna is presented.  In a fact,  the approach from par. 4.4 is extended for

another dimension.

As already said, electric field intensity has to be expressed as a function of currents and charges over cells. For that purpose, vector potential A

and scalar potential φ are used. Moreover, the positive convention exp(+jkr) is considered

E = − jωµ A −∇φ. ( 4.5B.1 )

Vector potential A and scalar potential φ of elementary planar currents and charges physically represent contributions of sources to the electric

field in a given point.

From the mathematical point of view, potentials are the solution of Sommersfeld integrals. For simple situations, potentials can be composed on

the basis of the physical point of view. This approach is used even here.

Assume a two-dimensional antenna element over the ground plane (fig. 4.5B.1).  Relative permittivity of the dielectrics is considered (for this

moment) to be one, and contribution of an elementary current facet and charge one in the position r’ to the intensity in r is computed. Using

Coulomb (resp. Biot-Savart) low and respecting influence of ground plane (mirror principle), we get

A(r) =
µ0
4π [

exp(− jkr0)
r0

−
exp(− jkr1)

r1 ]dr ′,

φ(r) =
1

4πε0 [
exp(− jkr0)

r0
−

exp(− jkr1)
r1 ]dr ′,

where the distances r0 and r1 are

r0 = (x − x ′)2
+ (y − y ′)2√ ,

r1 = (x − x ′)2
+ (y − y ′)2

+ (2h)2√ .

Here r = (x, y), r’ = (x’, y’) and h denotes the height of the substrate.

Including the influence of the dielectrics is more complicated. The physical notion tells us that wave can propagate to the observation point r by

the infinite number of paths:

φ(r) =
1−η

4πε [exp(− jk0r0)
r0

− (1 + η) ∑
i= 1

∞ (−η)i−1
exp(− jk0ri)
ri ],

where

η =
εr −1

εr +1
,  ri = x2 + y2 + (2ih)2√

and εr is relative permittivity of the substrate.

Vector potential A stays unchanged.

In the case of sources of finite dimension (rectangular cells), the contribution is expressed in integral way

A(r) = ∬
p ř es plochu bu ň ky

GA(||r − r ′ |
|)J(r′) dS ′, ( 4.5B.2 )

φ(r) = ∬
p ř es plochu bu ň ky

Gq(||r − r′ |
|)q(r ′) dS ′, ( 4.5B.3 )

where GA and Gq are Green functions for magnetic potential and electric one, σ is charge density.

Now, eqn. (4.5B.2) is discretized. In order to meet this task, a contribution of an arbitrary current (charge) cell to the potential in the center of

another cell has to be expressed. Therefore, we denote

mi j
Ax = ∬

p ř es plochu i− t é bu ň k y
Gxx

A (||rj − r′ |
|)Jx (r ′) dS ′, ( 4.5B.4a )

mi j

Ay
= ∬

p ř es plochu i− t é bu ň k y
Gyy

A (||rj − r′ |
|)Jy(r ′) dS ′, ( 4.5B.4b )
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Fig. 4.5B.2 Example of charge-cell mesh. Green: current

components (cells) Jx, red: current components

(cells) Jy.

Fig. 4.5B.3 L-shaped element. Charge

cells 1 to 4. Current nodal

values Jx
1, Jx

2, Jy
1

mi j
φ

= ∬
p ř es plochu i− t é bu ň k y

Gq(||rj − r′ |
|)σ(r ′) dS ′. ( 4.5B.5 )

Expression  mij
Ax  tells  how  j-th  current  cell  for  x-component

contributes  to  vector  potential in  the  center  of  i-th  cell.  Similar

meaning is observed at mij
Ay for Jy and at mij

φ for scalar potential.

As shown in the layer A, meshes of current cells and charge ones

are mutually shifted for one half of a cell,  and hence,  a different

numbering is  used.  Moreover,  we  independently  number  current

cells for x-component and y-component. This fact is illustrated by

numbering in fig. 4.5B.2, which corresponds to the structure in fig.

4.5A.3.

Composing

equations

for

unknown

current

distribution, we have to know a function describing contributions between two arbitrary

cells (of the same type).  Due to the limited space,  we do not describe this function

here.  We state only that  all the  contributions  are  evaluated at  the beginning of  the

program. Moreover, several contributions repeat (e.g., cells 1 and 2 for the component

Jx are of the same contribution as cells 3 and 4). The mutual contributions are stored in

a moment table (matrix). Calling the function, a contribution on a respective position of the table is read.

Now, the set of equations can be composed. We do not introduce a general relation,  but a given simple situation is described.  Fig.  4.5B.3

contains a L-shaped antenna element, consisting of four charge cells and three current cells (two of them are related to Jx, one of them to Jy).

Next, equations for E1
x are built:

E1
x = − jω ∑

j = 1

3
m

1 j
Ax −

1

∆[−
j

ω

J
1
x −0

∆x
+

J
1
y

−0

∆y (m
21
φ

− m
11
φ ) −

j

ω

0− J
2
x

∆x
+

0−0
∆y

⎛⎝m
23
φ

− m
13
φ ⎞⎠ −

j

ω
0−0
∆x

+
0− J

2
y

∆y (m
24
φ

− m
14
φ )].

The first term represents the contribution of all current cells to the current cell Jx
1.The second term represents the contribution of charge cells;

expression {}/∆x denotes replacing the derivative ∂φ/∂x by the central difference (see par. 4.1). Brackets contain three terms since there are

four charge cells. E.g., the first term represents the contribution of the first charge cell to the center of the second cell minus the contribution of

the first  charge cell to the center  of  the  first  cell.  I.e.,  the first  index at  m  denotes the  center  of  the  observation charge cell,  where  the

contribution is computed,  and the second index denotes the source cell.  Charge in each cell is evaluated using nodal current densities and

exploiting continuity equation

∇ ⋅ J = − jωσ, ( 4.5B.6 )

where J[A/m] and σ[C/m2] are current density and charge density.

Similarly, equations for E2
x and E1

y can be composed. Next, we turn our attention to feeding the structure.

Plane wave feeding is the simplest way of feeding (see par. 4.4). For each current cell, we substitute Ex = -Ex
I and Ey = -Ey

I, where Ex
I and Ey

I

represent components of incident wave. In our situation, the antenna is assumed to be fed by a voltage source, which is connected between the

analyzed structure and an auxiliary microstrip (the incident wave is not considered). In detail, the situation from fig. 4.5B.2 is depicted in fig.

4.5B.4.

In the position, where 1 denoted the input port in fig. 4.5B.2, a voltage source of a voltage VS is considered. The source supplies the structure

by the current IS. One pole of the source is connected to the analyzed structure, the second pole is connected to the auxiliary microstrip (stub),

which represents a certain impedance Zstub related to ground. Input impedance Z1 is then given by the relation

Z1 = ZS − Zstub , ( 4.5B.7 )

where the impedance ZS is determined as the ratio of the voltage VS (its value is eligible) and the current IS. The impedance Zstub is computed
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analytically as –Z0cotg(β lstub).

Fig. 4.5B.4 Approximation of current distribution along structure from fig. 4.5B.2; horizontal

de-embedding.

If impedance is computed by the above-described way, the result does not correspond to the reality because influence of edge capacitances is

not considered (see fig. 4.5B.5).

Fig. 4.5B.5 Edge capacitances

Respecting capacitances, the impedance Zstub has to be added in parallel to ZS = 1/jω CS  (CS is not open-end capacitance, but it is smaller).

That way, we get Zstub’ = Zstub || ZS. Capacitance CG is already included in the impedance ZS and computing impedance Z1‘ = ZS – Zstub‘, we

have to subtract ZS. The final impedance is Z1” = Z1‘ ZS / (Zs–Z1‘).

Finally, we give a note about feeding the structure.

We can assume the structure to be fed by a voltage source connected between the microstrip and ground. This approach causes the direct

computation of input impedance from the voltage and the current to provide results, which differ from the measured value. The reason of this

difference is hidden in the fact that long cables are used for measuring, and therefore, the TEM wave (forward one, backward one) is present in

the point of interest. If feeding is implemented by the above-described source connected between the microstrip and ground (localized feeding),

then field distribution at the positive pole does not correspond to the field caused by TEM waves, but end effect influences results. In practical

life, the result of localized feeding has to be transformed to the long-cable feeding (vertical de-embedding). The current standing wave has to be

de-composed to the forward wave and the backward one. De-composition is not performed at the source port, but is shifted to the right. If both

the waves are known, then reflection coefficient can be evaluated at the position of measurement. Then, the phase of reflection coefficient is

shifted to the computation position.

The set of equations for unknown nodal values was built respecting physical principles. Now, the mathematical approach, which corresponds to

the above-described notions, is given:

Current density is approximated in terms of basic functions

JX(x, y) = ∑
n = 1

Nx
JXn BXn  JY(x, y) = ∑

n = 1

Ny
JYn BYn

In our approach piecewise constant basis functions are used. As another possibility, rooftops can be used (linear in the first direction,

constant in the second direction).
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Integral expression of potentials based on Green functions is substituted to (4.5B.1)

{− jω∬
Ω

GA(x − x ′, y − y ′)J(x ′, y ′) dx ′d y ′} + {−∇[∬Ω Gq(x − x ′, y − y ′)ρ(x ′, y ′) dx ′d y ′]} + EI = 0.

Here, W denotes the metallic area and EI is intensity of incident wave. In most cases, the structure is fed via microwave ports and EI is

zero. Analyzing selective surfaces e.g., plane-wave feeding is assumed.

Charge is substituted from continuity equation and current density is expressed as a combination of basis functions. That way, we

obtain

J̃x
(n)(x, y) = ∑

nx =1

Nx
Jx

(nx)
Π (nx)(x, y)

⎧⎨⎩−
1
jω

∂
∂ x
∬
Ω

Gq(x − x ′, y − y ′) 
⎡
⎣⎢

∂

∂ x
∑

n = 1

Nx
JXn (x ′, y ′) +

∂

∂ y
∑

n = 1

Ny
JYn (x ′, y ′)

⎤
⎦⎥dx ′d y ′

⎫⎬⎭ + EX
I = 0,

⎧⎨⎩+ jω∬
Ω

Gyy
A (x − x ′, y − y ′) ∑

n = 1

Ny
JYn (x ′, y ′) dx ′d y ′

⎫⎬⎭ −

⎧⎨⎩−
1
jω

∂
∂ y
∬
Ω

Gq(x − x ′, y − y ′) 
⎡
⎣⎢

∂

∂ x
∑

n =1

Nx
JXn (x ′, y ′) +

∂

∂ y
∑

n = 1

Ny
JYn (x ′, y ′)

⎤
⎦⎥dx ′d y ′

⎫⎬⎭ + EY
I = 0.

Exploiting Galerkin method, current approximation error is minimized. Then, the following set of equations is obtained:

∑
n

Jn
X{〈Txm , Gxx

A
* Bxn〉 +

1

ω2
〈Txm ,

∂

∂ x

⎡
⎣⎢Gq *

∂

∂ x
BXn

⎤
⎦⎥〉} + ∑

n
Jn

Y{ 1

ω2
〈Txm ,

∂

∂ x [Gq *
∂

∂ y
Byn]〉} = 0,

∑
n

Jn
X{〈Tym , Gyy

A
* Byn〉 +

1

ω2
〈Tym ,

∂

∂ y [Gq *
∂

∂ y
Byn]〉} + ∑

n
Jn

X{ 1

ω2
〈Tym ,

∂

∂ y

⎡
⎣⎢Gq *

∂

∂ x
Bxn

⎤
⎦⎥〉} = 0

.

Inner integrals are of convolution nature, and therefore, they are denoted by asterisk. Outer integrals are of correlation nature, and

hence, they are denoted by brackets <>. The symbol T denotes weighting functions (in Galerkin method, they are identical with basis

functions).

From the mathematical point of view, Dirac pulses play the role of weighting functions in our formulation of moment method. This

approach is called collocation method.

All the integrals are efficiently evaluated and set of equations is composed. Solving it, unknown nodal values of current density are

obtained.

On the basis of known current distribution, other antenna parameters can be computed (reflection coefficient at a given port, input

impedance, etc.).

In the layer C, the patch antenna analysis by the moment method is illustrated by an example.
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