
5.1 Time-domain modeling of wire antennas by method of moments

Advanced theory

In this layer the implicit algorithm will be derived by solving the system of the equations (5.1A.1) to (5.1A.6) for the wire dipole which is placed along the z axis (fig.

5.1B.1).  Since only z components of the vector potential and the intensity of electric field are in this system of equations,  it is not necessary to distinguish among the

components of vectors. Thus, in the following text, the subscript z will be omitted.

The implicit algorithm will be derived from the equation (5.1A.5) which can be rewritten by considering the boundary condition (5.1A.6) to the following form

∂ A(z,  t) 

∂ t
+

∂φ(z,  t)
∂z

  = E I(z,  t) . ( 5.1B.1 )

Now, let’s carry out the first step of the solution, the application of the method of moments to (5.1B.1). Let’s divide the wire dipole to N segments of the same length ∆z

and denote the ends of the segments by coordinates z0, z1, …, zN+1 (fig. 5.1B.1). Further, let’s denote the center of segments by z0
+, z1

+, …, zN
+, and z1

-, z2
-, …, zN+1

-,

respectively. For the expansion of the current distribution on the wire dipole in space, let’s use the constant basis functions: in the region of a current cell (fig. 5.1B.1), which

is bounded by the coordinates either zn
+, zn+1

+ or zn-1
-, zn

-, the constant current distribution is supposed. It is appropriate to remember, that the current at the end of the wire

is equal to zero, because it can not flow anywhere. In the region of a charge cell, which is bounded by the coordinates zn, zn+1, the constant charge density distribution is

supposed.

Fig. 5.1B.1 Wire dipole discretization.

The constant basis functions are in the region of the current cell defined by the following relation

fn =

⎧
⎨
⎩
⎪
⎪

1       zn −
∆z
2

≤ z ≤ zn +
∆z
2

0      otherwise 

 . ( 5.1B.2 )

By these basis functions and time dependant unknown current coefficients In (t) the time-space current distribution in (5.1A.1) can be approximated

I(z, t) ≈ ∑
n = 1

N
In(t) fn(z).

( 5.1B.3 )

Let’s discretize our wire dipole in time (the second step). Let’s divide the time step to the equal intervals of the length ∆t and denote the individual time instant on time axes

by tk=k∆t for k = 0, 1, 2, …, ∞. At these time instants the current distribution on the wire antenna is be computed.

Substituting (5.1B.3) to (5.1A.1) and (considering (5.1B.2)) the vector potential at the point zm and the time instant tk can be written in the following form

A(zm , tk )    =   
µ

4π 
  

⌠

⌡

⎮⎮⎮⎮
ξ = −h

h

I(ξ, tn − R(zm , ξ) / c)
a2 + ||zm − ξ||

2√
dξ ≈   

µ0
4π 

  

⌠

⌡

⎮⎮⎮⎮⎮⎮
ξ = −h

h

∑
n = 1

N
In(tn − R(zm , ξ) / c) fn(ξ)

a2 + ||zm − ξ||
2√

dξ = ∑
n = 1

N
In(tRk (m, n))κ(m, n), ( 5.1B.4 )

where

κ(m, n) =
µ

4π

⌠

⌡
⎮⎮⎮⎮

ξ = zn −
∆z
2

zn −
∆z
2

dξ

a2 + ||zm − ξ ||
2√

=
µ

4π {ln[zm − zn +
∆z
2

+
⎛⎝zm − zn +

∆z
2

⎞⎠
2

+ a2√ ] − ln[zm − zn −
∆z
2

+
⎛⎝zm − zn −

∆z
2

⎞⎠
2

+ a2√ ]},
( 5.1B.5 )

tRk (m, n) = tk − R(m, n) / c, ( 5.1B.6 )

R(m, n) = a2 + ||zm − zn ||
2√ , ( 5.1B.7a )

R(m, n) = ||zm − zn ||. ( 5.1B.7b )

For the evaluation of the distance R(m, n) in (5.1B.6) the accurate relation (5.1B.7a), or the approximate one (5.1B.7b), which neglects the radius of a wire a, can be used.

Using the approximate relation increases the stability of the algorithm, however, it is possible to use it only if the length of the time step multiplied by the speed of light in the

surrounding medium is much larger, than the radius of the wire (c∆t>>a). Otherwise, the accuracy falls down. Using the approximate relation was introduced in [37] and if

the mentioned condition is met, it is appropriate to use (5.1B.7b). The interested reader can test the influence of that neglect on the accuracy and stability of the algorithm.
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Let’s discretize the scalar potential (5.1A.2) where the space-time charge density distribution is the unknown quantity.  The charge density can be computed with the

continuity equation (5.1A.4) which can be rewritten in the following form

σ(z, t) = −
⌠
⌡
⎮⎮

∂ I(z, t)
∂ z

dt. ( 5.1B.8 )

Substituting the space-time charge density distribution (5.1B.3) to (5.1B.8) and approxiomating the partial differentiation of the current with respect to variable z by the

center difference, the continuity equation (5.1B.8), after the swap of the derivation and integration, can be written

σ(z, t) ≈ −

∂ ∑
n= 1

N ⌠
⌡In(t)dt fn(z)

∂ z
≈ − ∑

n = 0

N
⌠⌡In+1(t)dt − ⌠⌡In(t)dt

∆z
fn

+ (z). ( 5.1B.9 )

Since the constant basis functions are used for the space approximation of the current (5.1B.3), the partial derivative with respect to variable z in (5.1B.9) could not be

computed straightforwardly (the derivative of the constant function is equal to zero), but the center difference has to be used. To be the differentiating correct, the integral of

currents with respect to time at the ends of the wire were included in (5.1B.9), although they are equal to zero. In the last step in (5.1B.9) the basis functions were swaped:

from the spacious approximation of the current by the basis functions fn(z) we got toward the approximation of the charge density by the basis functions fn
+(z).

Substituting the continuity equation (5.1B.9) to (5.1A.2) the scalar potential at the point zm
+ and the instant tk can be evaluated

φ(zm
+ , tk ) = −

1
4πε

⌠
⌡
⎮⎮

ξ = −h

h

σ(ξ, tk − R(zm
+ , ξ) / c)

R(zm
+ , ξ)

dξ ≈ −
1

4πε

⌠

⌡

⎮⎮⎮⎮⎮⎮⎮⎮⎮⎮⎮⎮⎮
ξ = −h

h

∑
n = 0

N

⌠
⌡
0

tk −R(zm
+ , ξ)/c

In+1(t)dt − ⌠
⌡
0

tk − R(zm
+ , ξ)/c

In(t)dt

∆z
fn

+ (ξ) 1

R(zm
+ , ξ)

dξ =

       = ∑
n= 1

N

⌠
⌡
0

tRk (m + , n + )

In(t)dtκ(m + ,  n + )

∆z
− ∑

n= 1

N

⌠
⌡
0

tRk (m + , n − )

In(t)dtκ(m + ,  n − )

∆z
= φ(zm

+ + , tk ) − φ(zm
+ − , tk )

,

( 5.1B.10 )

where

tRk (m ± , n ± ) = tk − R(m ± , n ± ) / c, ( 5.1B.11 )

R(m ± , n ± ) = a2 + ||zm
± − zn

± ||
2√ , ( 5.1B.12a )

R(m ± , n ± ) = ||zm
± − zn

± ||, ( 5.1B.12b )

κ(m ± , n ± ) =
1

4πε

⌠

⌡
⎮⎮⎮⎮

ξ = zn
± −

∆z
2

zn
± −

∆z
2

dξ

a2 + ||zm
± − ξ ||

2√
=

1
4πε {ln[zm

± − zn
± +

∆z
2

+
⎛⎝zm

± − zn
± +

∆z
2

⎞⎠
2

+ a2√ ] − ln[zm
± − zn

± −
∆z
2

+
⎛⎝zm

± − zn
± −

∆z
2

⎞⎠
2

+ a2√ ]}. (

5.1B.13

)

Here,  as in case of the evaluating of the vector potential,  it  is possible to use for the evaluation of the distance R(m ± , n ± ) in (5.1B.11) either the accurate relation

(5.1B.12a), or the approximate relation (5.1B.12b). The reasons and the condition are the same as in case of the evaluation of the vector potential.

Similarly the scalar potential at the point zm and the time instant tk can be evaluated zm
-

φ(zm
− , tk ) = φ(zm

− + , tk ) − φ(zm
− − , tk ). ( 5.1B.14 )

To evaluate the relations (5.1B.10) and (5.1B.14), it is necessary to compute the integral of the current with respect to time. The integral can be evaluated according to

different numerical integration rules. We choose the trapezoid rule because its implementation is easy and offers sufficient accuracy. By this rule, the integral of the current

in the interval from 0 to tk,, in case of the equidistant division of the interval, can be computed

⌠
⌡
0

tk

I(t)dt ≈ ∆t[
I(t0 = 0)

2
+ ∑

l = 1

k −1
I(tl) +

I(tk )
2 ]. ( 5.1B.15 )

Now, let’s go back to (5.1B.1) and discretize it. Let’s approximate the first derivative of the vector potential with respect to time by the center difference of the first order.

By this step the partial derivative of the vector potential is evaluated at the point zm and the time instant tk-1/2.  To be the calculation sufficiently accurate,  the partial

derivative of the scalar potential with respect to variable z has to be evaluated at the same point and the time instant. This can be reached by using the center differentiation

for the scalar potential at the points zm
+ and zm

- at two instants tk and tk-1. The average of these central differences is actually numerically evaluated the derivative of the

scalar potential at the point zmand the time instant tk-1/2.  Of course, the excitation pulse has to be evaluated at the same point and the instant as the vector and scalar

potentials. After this steps the equation (5.1B.1) can be rewritten into the following form

A(zm , tk )− A(zm , tk −1) 

∆t
+

1
2∆z (φ(zm

+ ,  tk ) − φ(zm
− ,  tk ) + φ(zm

+ ,  tk −1) − φ(zm
− ,  tk −1))  = E I(z,  tk −1/2) . ( 5.1B.16 )

Rearranging terms in (5.1B.16) we obtain
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A(zm , tk ) +
∆t

2∆z (φ(zm
+ ,  tk ) − φ(zm

− ,  tk ))  = ∆tE I(z,  tk −1/2) + A(zm , tk −1) 

                                                        −
∆t

2∆z (φ(zm
+ ,  tk −1) − φ(zm

− ,  tk −1))
. ( 5.1B.17 )

The vector potential on the left-side of the equation (5.1B.17), computed according to (5.1B.4), can be transcribed

A(zm , tk )    =   A1(zm , tk ) + A2(zm , tk ) , ( 5.1B.18 )

where

A1(zm , tk )    =    ∑
n= 1

N
In(tRk (m, n))κ(m, n)    f or  tRk (m, n) > tk −1 ,

( 5.1B.19a )

A2(zm , tk )    =    ∑
n= 1

N
In(tRk (m, n))κ(m, n)    f or  tRk (m, n) ≤ tk −1 .

( 5.1B.19b )

For evaluating A1(zm,  tk),  only the contributions of currents at delayed time instants tRk(m, n)>tk-1 are considered (the unknowns currents).  In case of the evaluating of

A2(zm, tk), only the contributions of currents at delayed instants tRk(m, n)≤tk-1 are considered (the known currents). The unknown current at the time instant tRk(m, n) in the

interval from tk-1 to tk can be evaluated

I(tRk (m, n))    =   
R(zm , zn)

c I(tk −1) + (1 −
R(zm , zn)

c )I(tk ) . ( 5.1B.20 )

Substituting (5.1B.20) to (5.1B.19a), A1(zm, tk) can be expressed by the unknown and known currents at the instants tk and tk-1

A1(zm , tk )    =  A11(zm , tk ) + A12(zm , tk ), ( 5.1B.21 )

where

A11(zm , tk ) = ∑
n= 1

N

(1 −
R(zm , zn)

c∆t )κ(m, n)In(tk ) = ∑
n = 1

N
A11C(m, n)In(tk ), ( 5.1B.22a )

A12(zm , tk ) = ∑
n= 1

N R(zm , zn)
c∆t

κ(m, n)In(tk ) = ∑
n = 1

N
A12C (m, n)In(tk ), ( 5.1B.22b )

The term A11(zm, tk) contains only the unknown currents at the instant tk.

Now, let’s focus our attention on the rest of the right-side of the equation (5.1B.17). The scalar potential (5.1B.10) at the point zm
+ can be evaluated

φ(zm
+ , tk ) = φ(zm

+ + , tk ) − φ(zm
+ − , tk ), ( 5.1B.23 )

where the terms on the right-side (5.1B.23) can be expressed as the vector potential (5.1B.18). Let’s focus our attention on the first term

φ(zm
+ + , tk ) = φ1(zm

+ + , tk ) + φ2(zm
+ + , tk ), ( 5.1B.24 )

where

φ1(zm
+ + , tk ) = ∑

n = 1

N ⌠
⌡
0

tRk (m + , n + )

In(t)dt
κ(m + ,  n + )

∆z
    f or tRk (m + ,  n + ) > tk −1

          

, ( 5.1B.25a )

φ2(zm
+ + , tk ) = ∑

n = 1

N ⌠
⌡
0

tRk (m + , n + )

In(t)dt
κ(m + ,  n + )

∆z
    f or tRk (m + ,  n + ) ≤ tk −1

          

. ( 5.1B.25b )

The situation is analogical as for the vector potential, however more complicated, because of the integral of the current with respect to time in (5.1B.25). Since the term

φ1(zm
++, tk) contains the unknown current at the time instant tk, let’s express the integral of the current over the interval from 0 to tRk(m+, n+) in (5.1B.25a) as the sum of

two integrals

φ1(zm
+ + , tk ) = φ1 '(zm

+ + , tk ) + φ13(zm
+ + , tk )

          
. ( 5.1B.26 )

where

φ1 '(zm
+ + , tk ) = ∑

n = 1

N ⌠
⌡

tk −1

tRk (m + , n + )

In(t)dt
κ(m + ,  n + )

∆z

          

. ( 5.1B.27a )

φ13(zm
+ + , tk ) = ∑

n = 1

N κ(m + ,  n + )

∆z
⌠
⌡
0

tk −1

In(t)dt = ∑
n = 1

N
φ13C(m + , n + ) ⌠

⌡
0

tk −1

In(t)dt

          

. ( 5.1B.27b )
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The term φ13(zm
++, tk) in (5.1B.27b) can be easily evaluated, since it contains only the known values of the currents. However, the term φ1’(zm

++, tk) contains the unknown

current at the time instant tk. Therefore we express φ1’(zm
++, tk) by the trapezoid rule for the numerical evaluation of the integral in the interval from tk-1 to tRk(m+, n+),

and the relations (5.1B.18) and (5.1B.20)

φ1 '(zm
+ + , tk ) = ∑

n= 1

N ∆t

2 ( tRk (m + ,  n + ) − tk −1

∆t )(In(tRk (m + ,  n + )) + In(tk −1)) κ(m + ,  n + )
∆z

=

                 = ∑
n = 1

N ∆t

2 (1 −
R(zm

+ , zm
+ )

c∆t )[In(tk −1) R(zm
+ , zm

+ )
c∆t

+

                             + (1 −
R(zm

+ , zm
+ )

c∆t )In(tk ) + In(tk −1)]
κ(m + ,  n + )

∆z
=

                 = φ11(zm
+ + , tk ) + φ12(zm

+ + , tk )

, ( 5.1B.28 )

where

φ11(zm
+ + , tk ) = ∑

n = 1

N ∆t

2∆z (1 −
R(zm

+ , zm
+ )

c∆t )
2

κ(m + ,  n + )In(tk ) = ∑
n = 1

N
φ11C(m + ,  n + )In(tk )

          

, ( 5.1B.29a )

φ12(zm
+ + , tk ) = ∑

n= 1

N ∆t

2∆z (1 −
R2(zm

+ , zm
+ )

c2 ∆t2 )κ(m + ,  n + )In(tk −1) = ∑
n = 1

N
φ12C (m + ,  n + )In(tk −1)

          

. ( 5.1B.29b )

Now only the term φ11(zm
++,  tk) contains the unknown current at the time instant tk.  This one can be easily expressed by (5.1B.29a).  The relation (5.1B.24) can be

expressed, considering (5.1B.25) to (5.1B.29), as follow

φ(zm
+ + , tk ) = φ11(zm

+ + , tk ) + φ12(zm
+ + , tk ) + φ13(zm

+ + , tk ) + φ2(zm
+ + , tk ). ( 5.1B.30 )

Analogically we can proceed with the evaluation of the term φ (zm
+-, tk)

φ(zm
+ − , tk ) = φ11(zm

+ − , tk ) + φ12(zm
+ − , tk ) + φ13(zm

+ − , tk ) + φ2(zm
+ − , tk ), ( 5.1B.31 )

or the scalar potential at the point zm
- and the time instant tk φ(zm

-, tk).

φ(zm
− , tk ) = φ(zm

− + , tk ) − φ(zm
− − , tk ), ( 5.1B.14 )

where

φ(zm
− + , tk ) = φ11(zm

− + , tk ) + φ12(zm
− + , tk ) + φ13(zm

− + , tk ) + φ2(zm
− + , tk ), ( 5.1B.32a )

φ(zm
− − , tk ) = φ11(zm

− − , tk ) + φ12(zm
− − , tk ) + φ13(zm

− − , tk ) + φ2(zm
− − , tk ). ( 5.1B.32b )

The terms on the right-sides of the relations (5.1B.31) and (5.1B.32) can be expressed similarly as the terms on the right-sides of relations (5.1B.24) to (5.1B.29) by

changing the corresponding superscripts + and -, or vice versa.

Substituting (5.1B.10), (5.1B.14), (5.1B.18) to (5.1B.21) and (5.1B.24) to (5.1B.32) into the left-side of the relation (5.1B.17) and by rearranging the terms in this equation

we obtain

A11(zm , tk ) +
∆t

2∆z
φ11(zm ,  tk )  = ∆tE I(zm ,  tk −1/2) − A12(zm , tk ) − A2(zm , tk ) + A(zm , tk −1) −  

                    −
∆t

2∆z (φ12(zm ,  tk ) + φ13(zm ,  tk ) + φ2(zm ,  tk ) + φ(zm
+ ,  tk −1) − φ(zm

− ,  tk −1))
, ( 5.1B.33 )

where

φ11(zm ,  tk ) = φ11(zm
+ + ,  tk ) − φ11(zm

+ − ,  tk ) − φ11(zm
− + ,  tk ) + φ11(zm

− − ,  tk ), ( 5.1B.34a )

φ12(zm ,  tk ) = φ12(zm
+ + ,  tk ) − φ12(zm

+ − ,  tk ) − φ12(zm
− + ,  tk ) + φ12(zm

− − ,  tk ), ( 5.1B.34b )

φ13(zm ,  tk ) = φ13(zm
+ + ,  tk ) − φ13(zm

+ − ,  tk ) − φ13(zm
− + ,  tk ) + φ13(zm

− − ,  tk ), ( 5.1B.34c )

φ2(zm ,  tk ) = φ2(zm
+ + ,  tk ) − φ2(zm

+ − ,  tk ) − φ2(zm
− + ,  tk ) + φ2(zm

− − ,  tk ). ( 5.1B.34d )

The system of N equations (5.1B.33) is possible, with considering (5.1B.18) to (5.1B.21) and (5.1B.23) to (5.1B.32), to rewrite into the following matrix equation

⎛⎝[A11C (m, n)] +
∆t

2∆z [φ11C(m,  n)]⎞⎠{I(m, tk )}  = {∆tEI(m,  tk −1/2)} − [A12C(m, n)]{I(n, tk −1)}  −

                    − {A2(m, tk )} + {A(m, tk −1)}  −
∆t

2∆z ([φ12C(m,  n)]{I(m, tk −1)} +

                    + [φ13C (m,  n)]
⎧
⎨
⎩
⎪
⎪

⌠
⌡
0

tk −1

I(m, t)dt

⎫
⎬
⎭
⎪
⎪ +  {φ2(m,  tk )} + {φ(m + ,  tk −1)} − {φ(m − ,  tk −1)}

⎞

⎠
⎟⎟⎟

,

( 5.1B.35 )

where

φ11C (m,  n) = φ11C(m + ,  n + ) − φ11C(m + ,  n − ) − φ11C(m − ,  n + ) + φ11C(m − ,  n − ), ( 5.1B.36a )

φ12C(m,  n) = φ12C (m + ,  n + ) − φ12C (m + ,  n − ) − φ12C(m − ,  n + ) + φ12C (m − ,  n − ), ( 5.1B.36b )
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φ13C(m,  n) = φ13C (m + ,  n + ) − φ13C (m + ,  n − ) − φ13C(m − ,  n + ) + φ13C (m − ,  n − ), ( 5.1B.36c )

φ2(m,  n) = φ2(m + ,  n + ) − φ2(m + ,  n − ) − φ2(m − ,  n + ) + φ2(m − ,  n − ). ( 5.1B.36d )

In (5.1B.35) we denote the matrix of the size NxN and Nx1 by square and brace brackets, respectively. It is apparent that the left side of the equation (5.1B.35) contains

only the unknown currents at the time instants t=tk, however, the right-side contains the known currents at time instants t±tk-1. The algorithm can start with the assumption

{I(m, t0)}={0} and computing {I(m, t1)}. When the current are computed {I(m,t1)}, then it is possible to compute {I(m,t2)} and so on. Further, it should be noted, that it is

necessary to solve the inverse matrix. However, this one does not depend on time and it is spare. Thus, the inverse matrix is computed only once.

Using the implicit algorithm is demonstrated in the layer A on the analysis of the wire dipole.

Numerical model of antenna excitation

Let’s go back to the excitation of our wire antenna, and discus the appropriate numerical model of the excitation. Let’s suppose that the feeding ports of our antenna are

located in the position of the current cells z1, z2, …, zN of our discretized wire antenna (fig. 5.1B.1); denote this place by zf. The length of the feeding port is equal to the

length of the discretization segment. An antenna can generally work in a receiving or transmitting mode.

If the antenna works in the receiving mode, the plane wave electromagnetic wave incidents on antenna’s surface, and its transient dependence can be arbitrary (in our case it

is defined by a Gaussian pulse modulated by a harmonic signal (5.1A.7)). Depending on the direction of the incident wave with the respect to antenna axis, the transient

dependence of the incident wave at the current cells z1, z2, …, zN is delayed. The incident wave induces in the wire antenna a current. The current response at the location

of the feeding port zf can be recorded.

If the antenna works in the transmitting mode, the situation is analogical to the one described in chapter 4.1. In the transmitting mode the voltage source is connected to the

feeding port of the antenna at zf. This source evokes the intensity of the electric field at the feeding port (in our case the time dependence is described by the Gaussian pulse

modulated by a harmonic signal). Since the excitation source is connected only at the location of the feeding port zf, at the other current cells the intensity of the excitation

field is equal to zero.
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