
5.1 Time-domain modeling of wire antennas by method of moments

Developing Matlab

The program for the analysis of the wire dipole by the implicit approach is  from the point of the implementation demanding.  Firstly it  is

necessary to compute the excitation Gaussian pulse modulated by a harmonic signal (5.1A.7):

EG=E0*4/(c*T*sqrt(pi)).*exp(-(4/T)^2*(t-t0-delt/2).*(t-t0-

delt/2)).*cos(2*pi*f0*(t-delt/2));

Secondly the values of the coefficients κ( m, n) and κ( m±, n±) are evaluated according to the relations (5.1B.5) and (5.1B.13). Further, the

distances  between the  discretization  segments,  according to  (5.1B.7)  and  (5.1B.12),  are  computed.  We have  an  optional choice  for  this

calculation. We can use either the accurate relations (5.1B.7a) and (5.1B.12a), or the approximate relations with neglecting of the radius of the

antenna wire (5.1B.7b) and (5.1B.12b), if the following condition is met: c∆t>>a.

Rmn=zeros(Nz+1,1);

kappa=zeros(Nz+1,1); % kappa according to (5.1B.5)

for m=0:Nz % (5.1B.13)

hlp1=log((m+0.5)*delz + sqrt(((m+0.5)*delz)^2+a^2));

hlp2=log((m-0.5)*delz + sqrt(((m-0.5)*delz)^2+a^2));

kappa(m+1)=(hlp1-hlp2);

% distance of discretization elements (5.1B.7) and (5.1B.12), optional

choice

% if c*delt>>a is met, it is better to use (5.1B.7b) and (5.1B.12b)

neglecting of radius of dipole (layer B)

% R(m+1)=sqrt(a^2+(m*delz)^2); % (5.1B.7a) a (5.1B.12a)

R(m+1)= m*delz; % (5.1B.7b) a (5.1B.12b)

end

kappaFI=1/4/pi/ep*kappa; % kappa for scalar potential (5.1B.13)

kappa=mi/4/pi*kappa; % kappa for vector potential (5.1B.5)

Further,  we evaluate the values of the matrix elements in (5.1B.35), i.e.  [A11C(m,  n)],  [A12C(m,n)] according to the relations (5.1B.35) and

(5.1B.22)  for  the  vector  potential and  [φ11C(m,  n)],  [φ12C(m,n)]  and  [φ13C(m,  n)]  according to  the  relations  (5.1B.36),  (5.1B.27b)  and

(5.1B.29) for the scalar potential. Here it is necessary to notice that the elements of these matrixes concern currents for time tRk>tk-1. In case of

the matrixes of the vector potential [A11C(m,n)], [A12C(m, n)], the source code can be written:

A11C=zeros(N,N); % coefficients of vector potential (5.1B.35) and (5.1B.22)

A12C=zeros(N,N);

for m=1:N,

for n=1:N,

mn=abs(m-n); % consider terms at time tk>=tRk>tk-1

if(R(mn+1)<cdelt) % distance has to be smaller than c*delt

A11C(m,n)=A11C(m,n)+(1-R(mn+1)/cdelt)*kappa(mn+1);

A12C(m,n)=A12C(m,n)+R(mn+1)/cdelt*kappa(mn+1);

end

end

end

In case of the matrixes of the scalar potential [φ11C(m, n)], [φ12C(m,n)] and [φ13C(m, n)] only a part of the source code for the calculation of the

contribution of the first term with indexes (m+, n+) in (5.1B.36) will be shown. The calculation of the other terms with the indexes indexi (m+,

n-), (m-, n+) and (m-, n-) is analogical:

FI11C=zeros(N,N); % coefficients of scalar potential (5.1B.36)

FI12C=zeros(N,N); % for ++ according to (5.1B.27b) and (5.1B.29);

FI13C=zeros(N,N); % for other combinations analogically

for m=1:N,

for n=1:N,

mn=abs(m-n); % computing of distance indexes between elements

mnPP=mn; % P is +; M is -

mnPM=mn+1;

mnMP=abs(mn-1);

mnMM=mn;

if(m<n)

hlp=mnPM;

mnPM=mnMP;

mnMP=hlp;

end

% terms contribute if the following condition is met: tRk>tk-1

if(R(mnPP+1)<cdelt)

FI11C(m,n)=FI11C(m,n) -delt/delz/2*(1-R(mnPP+1)
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/cdelt)^2*kappaFI(mnPP+1); %(5.1B.29a)

FI12C(m,n)=FI12C(m,n) -delt/delz/2*(1-(R(mnPP+1)

/cdelt)^2)*kappaFI(mnPP+1); %(5.1B.29b)

FI13C(m,n)=FI13C(m,n)-1/delz*kappaFI(mnPP+1); %(5.1B.27b)

end

.

.

.

end

end

Since the inverse matrix in (5.1B.35) does not depend on time, we evaluate it before the time loop:

invA11CFI11C=inv(A11C+delt/delz/2*FI11C); % inverse matrix (5.1B.35)

Finally we implement the time loop where we compute from the known time “samples” of the vector and scalar potential the future samples of

these quantities. Note that the values of currents, or the values of the integrals of currents, which do not fit to discrete time instants, are between

the time instants linearly approximated. The integral of currents, which is computed according to the trapezoid rule, is stored in the variable IS.

The meaning of the other symbols should be apparent. Again in case of the calculation of the scalar potential, the source code is shown only for

the first term with indexes (m+, n+) (see (5.1B.34) and (5.1B.36)), the calculation of the contribution of the other terms with indexes (m+, n-),

(m-, n+) and (m-, n-) is analogical.

% TIME LOOP

for k=3:Nt,

A2=zeros(N,1); % (5.1B.19b)

FI2=zeros(N,1); % (5.1B.36d), (5.1B.25b) and further analogically for

+-,-+,--

for m=1:N,

for n=1:N,

% computing of distance indexes between elements

mn=abs(m-n); % vector potential

mnPP=mn; % scalar potential

mnPM=mn+1; % P is +; M is -

mnMP=abs(mn-1);

mnMM=mn;

if(m<n)

hlp=mnPM;

mnPM=mnMP;

mnMP=hlp;

end

% further the terms are computed if: tRk<=tk-1

if(R(mn+1)>=cdelt) % vector potetntial (5.1B.19b)

tk=k-R(mn+1)/cdelt;

if(tk>1)

ftk=floor(tk); % linear approximation of current

In=(I(n,ftk+1)-I(n,ftk))*(tk-ftk)+I(n,ftk);

A2(m,1)=A2(m,1)+In*kappa(mn+1);

end

end

if(R(mnPP+1)>=cdelt) % scalar potential ++; (5.1B.36d),

(5.1B.25b)

tk=k-R(mnPP+1)/cdelt;

if(tk>1)

ftk=floor(tk); % linear approximation of integral of

current

ISn=(IS(n,ftk+1)-IS(n,ftk))*(tk-ftk)+IS(n,ftk);

FI2(m,1)=FI2(m,1)+ISn/delz*kappaFI(mnPP+1);

end

end

.

.

.

end

end

E(nap,1)=EG(k); % excitation vector is non-zero at the location of

feeding (5.1B.7)

% (5.1B.35)

I(:,k)=invA11CFI11C*(delt*E-A12C*I(:,k-1)-A2+A -delt/2/delz*

(FI12C*I(:,k-1)+FI13C*IS(:,k-1)+FI2+FI)); % integration of current with

respect to time (trapezoid rule) (5.1B.15)

IS(:,k)=(I(:,k)+I(:,k-1))*delt/2+IS(:,k-1); % preparation for the next

step

A=A11C*I(:,k)+A12C*I(:,k-1)+A2; % (5.1B.18) a (5.1B.21)
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FI=FI11C*I(:,k)+FI12C*I(:,k-1)+FI13C*IS(:,k-1)+FI2; %

(5.1B.30)-(5.1B.33)

% considering (5.1B.26)-(5.1B.29)

end
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