
Tab. 8.1A.1 Typical values of relative

permittivity [44].

Materiál εr []

Si 11,7

SiO2 3,9

Si3N4 7,2

GaAs 12,5

Ge 16,1

8.1 Drift diffusion model

Basic theory

1        Basic Semiconductor Equations

The device modeling represents the problem of charge transport in macroscopic scale in comparison with the semiconductor lattice dimensions.

In this approach we assume that the movement of electron between two collisions is described by Newton law and only the interactions with

lattice are described by quantum mechanics.  So,  the carriers can be described statistically thought the distribution function that is given by

solving of Boltzman transport equation. However, this is a difficult task to accomplish, thus through several idealistic simplification of Boltzman

equation we obtain the  practical system of  equations  (8.1A.1) called  the  drift-diffusion model.  These  equations  are  also  called the  basic

semiconductor equations. They can be easily deduced from Maxwells equations.

∇ ⋅ (∇Ψ) =
q

ε (n − p − C), ( 8.1A.1a )

∇ ⋅ (Jn) − q
∂n
∂ t

= qR, ( 8.1A.1b )

∇ ⋅ (Jp) + q
∂ p

∂ t
= − qR, ( 8.1A.1c )

Jn = qnµn E + qDn∇n, ( 8.1A.1d )

Jp = qpµp E − qDp∇ p. ( 8.1A.1e )

Equation  (8.1A.1a)  is  a  Poisson  equation  for  electric  potential Ψ,  where  the  charge density  is  defined  by  elementary  charge  q  and  the

concentration of negatively charged electrons n,  the concentration of positively charged holes p and fixed charge concentration C.  ε in this

equation denotes permittivity of used semiconductor. Values of relative permittivity for the most common materials are listed in tab. 8.1A.1.

Continuity equation (8.1A.1b) and (8.1A.1c) express that the sources and sinks of current

density are fully compensated by the time change of free charge and joint by function R,

which expresses the rate of generation and recombination of electrons and holes. Jn denotes

current  density  caused  by  electrons,  Jp  current  density  caused  holes  and  t  is  the  time.

Expression  of  the  rate  R  requires  a  good  knowledge  of  the  physical  mechanisms  of

generation and recombination in semiconductor materials and is one of the key parameters

for obtaining the relevant results of simulations of semiconductor structures.

In both current densities equations (8.1A.1d) and (8.1A.1e) the first term on the right side is

a component of current density caused by the Lorenz force,  taking into account only the

influence of the electric field E (the effect of magnetic induction is neglected), and establishes the effective mobility of electrons µn and holes µp

Their value is generally defined by empirical relationships. Mobility of charge carriers is a quantity which has a large influence on the properties

of semiconductor components and therefore its correct modeling is very important. The second term on the right side of equations (8.1A.1d)

and (8.1A.1e) represents  the  effect  of  carrier  diffusion in  the direction of the gradient  of  concentration and introduces  Einstein diffusion

constants

Dn = µn
kT
q , ( 8.1A.2a )

Dp = µp
kT
q , ( 8.1A.2b )

where k is the Boltzmann constant and T is the temperature.

2        Physical Parameters

The equations (8.1A.1) constitute the basic equation system for analyzing and simulation of most semiconductor devices. However, there may

be cases when become important physical phenomena that are not sufficiently covered by these equations. That is the case of tunneling currents

through very thin layers, which have a significant effect on the properties of the devices. Usually are used the empirical corrections than more

complex system of equations to describe such phenomena. Physical parameters of these equations define the geometry of the device, kind of

semiconductor material and used manufacturing technology. Their modeling will be discussed in the following paragraphs.

Doping Profile

Distribution of impurities in the semiconductor volume, resulting in N type or P type semiconductor, determines the geometry and function of a

semiconductor device. It is therefore essential input information to achieve a accurate results of simulations, so the manufacturing processes

such as ion implantation,  diffusion,  thermal oxidation,  epitaxial accretion and others should be  properly modeled.  The scope of following
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paragraphs will be restricted only to processes of  ion implantation and diffusion of impurities in volume of semiconductor substrate.  The

resulting profiles of these processes are often modeled by Gaussian function. An example of doping profile of P-N diode is shown in fig. 8.1A.1.

Fig. 8.1A.1 Example of P-N diode doping profile

Carriers Mobility

The movement of carriers in semiconductors is disturbed by collisions with the crystal lattice, impurities and defects, therefore, track of the

carriers movement between two points is not a straight line.  In order of easily imaginable description this phenomenon was introduced the

mobility, which is modeled with respect to the mechanisms that affect the carriers collision. These mechanisms may be caused by

atomic lattice material

ionized impurities

carrier-carrier collisions

neutral impurities

intensity of the electric field

Often can be used the value µn, p
300  specified for the given material at a temperature of 300K presented in tab. 8.1A.2.

Tab. 8.1A.2 Typical values of carriers mobility at temperature 300K [44].

materiál µn
300  [m2V-1s-1] µp

300  [m2V-1s-1]

Si 0,14 0,04

GaAs 0,8 0,04

Ge 0,38 0,18

Generation and Recombination of Carriers

In the previous paragraphs was mentioned function R,  which describes the rate of generation and recombination of electrons and holes. The

dominant mechanism is Shockley-Read-Hall recombination and generation, which is modeled as a trap between valence and conductive band of

semiconductor. The resulting function has the following form

RSRH =
np−ni

2

τp(n+ni)+τn(p+ pi)
, ( 8.1A.3 )

where, τn and τp are carriers lifetime and ni is the intrinsic concentration.

3        Analysis of Basic Equations and Boundary Conditions

In the first section was given a set of basic equations (8.1A.1). It is important to note that in the current densities in the relations (8.1A.1d) and

(8.1A.1e) have been omitted the currents  caused by a narrowing of the forbidden zone and temperature  gradient,  because their  effect  is

Copyright © 2010 FEEC VUT Brno All rights reserved.



Fig. 8.1A.2 2D geometry of planar

MOSFET transistor [44]

considered to be negligible. However, the (8.1A.13) may become incorrect if any of these phenomenon become significant. Using (8.1A.1a) and

by substituting the current density equations (8.1A.1d) and (8.1A.1e) into the continuity equation (8.1A.1b) and (8.1A.1c) we obtain a system

of three partial differential equations (8.1A.4) with variables Ψ, n a p.

∇ ⋅ (∇ψ) −
q

ε (n − p − C) = 0, ( 8.1A.4a )

∇ ⋅ (Dn∇n − nµn∇ψ) − R =
∂n
∂ t

, ( 8.1A.4b )

∇ ⋅ (Dp∇ p + pµp∇ψ) − R =
∂ p

∂ t
. ( 8.1A.4c )

For mathematical analysis we need to know the initial estimation of Ψ,  n and p and boundary conditions in analyzed domain. The bounded

domain D is generally three-dimensional, like practically all semiconductor structures. However, in many cases, this domain can be considered

as two-dimensional, or even one-dimensional, which make the analyzed the problem significantly easier.

Lets ∂D denotes partial boundary of domain D. It can be divided into two parts

∂ D = ∂ Dp∪∂ Da ( 8.1A.5 )

where ∂Dp  denotes those parts of the boundaries that are real,  physical boundaries,  such as contacts and interfaces. ∂Da  indicates artificial

interfaces that are introducing, for example, to exclusion of sub-structure on the large substrate or to the separation of neighboring devices on a

common substrate.

The illustrative description of idealized 2D geometry of MOS transistor is depicted in

fig.  8.1A.2.  The  entire  domain  is  represented  by  polygon  A-B-C-D-E-F-G-H-A.

Equation  (8.1A.4)  is  valid  only  in  the  subdomain  A-B-E-F-G-H-A.  Insulator

B-C-D-E-B  can  be  characterized  either  by  the  Laplace  equation  for  electrostatic

potential (8.1A.6) or by assumption of absence of charge carriers (8.1A.7).

∇ ⋅∇(Ψ) = 0 ( 8.1A.6 )

n = p = C = 0 ( 8.1A.7 )

However,  the use of these equations makes it  impossible to determine the current

passing through the base and the influence of the charge on insulating oxide layer.

The boundaries A-B,  E-F,  C-D and B-E can be considered as physical boundaries

representing three contacts and interface between the semiconductor and insulator.

Boundaries A-H, B-C, D-E, F-G and G-H are considered as artificial boundaries.

Physical boundaries can be divided into three categories.

∂ DP = ∂ DO∪∂ DS∪∂ DI, ( 8.1A.8 )

where ∂DO indicate the ohmic contact, ∂DS denotes Schottky contact and ∂DI is the

insulator interface.

Summary of boundary conditions  for  all three  dependent  variables  of  the  system

(8.1A.4)  is  given  in  the  following tab.  8.1A.3,  where  n  denotes  normal vector

perpendicular to ∂D and un,p denotes the speed of thermal recombination.

Tab. 8.1A.3 Boundary conditions typical semiconductor interface structures.

ohmic contact Shottky contact
semiconductor

- insulator

artifical

interface

electric

potential
ψb =

kT
q ar sinh

⎛
⎝⎜ C

2ni

⎞
⎠⎟ ψb =

kT
q ar sinh

⎛
⎝⎜ C

2ni

⎞
⎠⎟

∂ψ

∂n
= 0

∂ψ

∂n
= 0

electron

concentration n =
C2 +4ni

2√ +C

2
Jn n = − qun

⎛

⎝
⎜⎜n −

C 2 +4ni
2√ +C

2

⎞

⎠
⎟⎟ Jn n = 0 ∂n

∂n
= 0

hole

concentration p =
C2 +4ni

2√ −C

2
Jp n = − qup

⎛

⎝
⎜⎜p −

C2 +4ni
2√ −C

2

⎞

⎠
⎟⎟ Jp n = 0

∂ p

∂n
= 0
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