
8.1 Drift diffusion model

Advanced theory

1        Basic Semiconductor Equations

The fundamentals of semiconductor physic are well described by tools of quantum mechanic. This point of view gives us a model of particle behavior at atomistic level

where electrons are described by wave functions whose frequency and wavelength are related to the particle energy and momentum. Electrons in semiconductor are well

described by superposition of different wave functions called wave packet. The wave packet energy and momentum are the solution of the Schrödinger equation, the heart

of quantum mechanic. So the motion of the particle is described by a single wave packet subject to the external forces and to the interaction with the crystal lattice.

The device modeling represents the problem of charge transport in macroscopic scale in comparison with the semiconductor lattice dimensions. In this approach we assume

that the movement of electron between two collisions is described by Newton law and only the interactions with lattice are described by quantum mechanics. So, the

carriers can be described statistically thought  the distribution function that is given by solving of  Boltzmann transport  equation.  However,  this  is  a  difficult  task to

accomplish,  thus through several idealistic  simplification of  Boltzmann equation we obtain  the  practical system of equations  called the drift-diffusion model.  These

equations are also called the basic semiconductor equations. They can be easily deduced from Maxwell’s equations (8.1B.1) as will be shown in following paragraphs.

∇×H = J +
∂D
∂ t

( 8.1B.1a )

∇×E = −
∂B
∂ t

( 8.1B.1b )

∇ ⋅D = ρ ( 8.1B.1c )

∇ ⋅B = 0 ( 8.1B.1d )

In those equations E denotes electric field and H magnetic field, D is electric induction and B magnetic induction. J is the current density, ρ is the space charge density and

t is the time.

To complete the description we have to introduce the material relations

D = εE, ( 8.1B.2a )

B = µH, ( 8.1B.2b )

where  ε  denotes  permittivity  and  µ  permeability  of  medium.  Generally  these  are  second  order  tensors  (anisotropic  character),  but  the  common materials  used  in

semiconductor devices can be considered as scalars (isotropic character). Values of relative permittivity for the most common materials are listed in tab. 8.1B.1. Relations

(8.1B.2) are valid only in semiconductor materials with time-invariant permittivity and permeability and without considering of the mechanical strain due to polarization

forces. For this reason, are relations (8.1B.2) are insufficient to describe the piezoelectric and ferroelectric phenomena.

Tab. 8.1B.1 Typical values of relative permittivity [44].

Material εr []

Si 11,7

SiO2 3,9

Si3N4 7,2

GaAs 12,5

Ge 16,1

1.1     Poisson Equation

The third Maxwell's equation (8.1B.1c) is in the form of Poisson partial differential equation. By using of relations (8.1B.2a) and (8.1B.3) can be formulated for eletric

potential Y (8.1B.4)

E = −∇Ψ , ( 8.1B.3 )

∇ ⋅ (ε∇Ψ) = − ρ. ( 8.1B.4 )

To use equation (8.1B.4) in analysis of semiconductor devices we define the space charge density ρ as a product of elementary charge q and the concentration of charge

carriers, ie, the sum of the concentrations of positively charged holes p and the concentration of negatively charged electrons n, which are compensated by a fixed charge

concentration of impurities C (donors or acceptor) in the lattice of semiconductor.

ρ = q(p − n + C) ( 8.1B.5 )

where C = ND - NA corresponds to the concentration of impurities defined as sum of the concentration of ionized donors ND and ionized acceptors NA, including signs of

compensated charge.

Now we can combine (8.1B.4) and (8.1B.5) to obtain the final form of Poisson equation (8.1B.6) suitable for modeling the electrostatic field in semiconductor structures.

∇ ⋅ (∇Ψ) =
q

ε (n − p − C) ( 8.1B.6 )

1.2     Continuity Equation

The continuity equation can be derived directly from the first Maxwell equation (8.1B.1a). Applying the divergence operator to this equation and considering that the

divergence of the rotation vector is zero yields

∇ ⋅∇×H =∇ ⋅ J +
∂ ρ

∂ t
= 0. ( 8.1B.7 )

If the vector of the current density J is divided to the sum of its components due to holes Jp and electrons Jn

J = Jp + Jn ( 8.1B.8 )
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and considering that the fixed charge in the semiconductor crystal lattice is time-invariant

∂C
∂ t

= 0, ( 8.1B.9 )

yields

∇ ⋅ (Jp + Jn) + q
∂
∂ t

(p − n) = 0. ( 8.1B.10 )

This equation expresses that the current density sources or sinks are fully compensated by the time change of space charge. In order to obtain the continuity equation

separately for electrons and holes, we need to establish a common function R, which expresses the rate of generation and recombination of electrons and holes. Then we

get

∇ ⋅ (Jn) − q
∂n
∂ t

= qR, ( 8.1B.11a )

∇ ⋅ (Jp) + q
∂ p

∂ t
= − qR. ( 8.1B.11b )

The formulation of the rate R requires a good knowledge of the physical mechanisms of generation and recombination in semiconductor materials and is one of the key

parameters for obtaining the relevant results of simulations of semiconductor structures.

1.3     Kinetic Equations of Charge Carriers

In the previous chapter we introduced the vector current density divided into two components (8.1B.8). Current density of charged particles can be generally expressed as

the product of a charge of single particle, particles concentration and average velocity (drift velocity) of particles. Then the current density of electrons and holes can be

writen as

Jn = qn vn , ( 8.1B.12a )

Jp = qp vp , ( 8.1B.12b )

where vn is the vector of electrons drift velocity and vp id the holes drift velocity. The main problem is relating the drift velocity to forces acting on the carriers. By number

of simplifications and idealistic assumptions [44] the drift velocity can be considered as result of Lorenz force and diffusion force. Then we can write

Jn = qnµn E + qDn∇n, ( 8.1B.13a )

Jp = qpµp E − qDp∇ p. ( 8.1B.13b )

In both equations, the first term on the right side is a component of current density caused by the Lorenz force, taking into account only the influence of electric field

(magnetic induction effect is neglected), and establishes the effective mobility of electrons µn  and holes µp.  Mobility of charge carriers is a quantity which has a large

influence on the properties of semiconductor components and therefore its correct formulation is very important. The second term on the right side of equations (8.1B.13)

represents the effect of carrier diffusion in the direction of the gradient of carrier concentration and introduces Einstein diffusion constants

Dn = µn
kT
q , ( 8.1B.14a )

Dp = µp
kT
q , ( 8.1B.14b )

where k is Boltzmann’s constant and T is the temperature.

2        Physical Parameters

The equations (8.1B.6), (8.1B.11) and (8.1B.13) constitute the basic equation system for analyzing and simulation of most semiconductor devices. However, there may be

cases when become important physical phenomena that are not sufficiently covered by these equations. That is the case of tunneling currents through very thin layers,

which have a significant effect on the properties of the devices.  Usually are used the empirical corrections than more complex system of equations to describe such

phenomena.

Physical parameters of these equations define the geometry of the device, kind of semiconductor material and used manufacturing technology. Their modeling will be

discussed in the following paragraphs.

2.1     Doping Profile

Distribution of impurities in the semiconductor volume, resulting in N type or P type semiconductor, determines the geometry and function of a semiconductor device. It is

therefore essential input information to achieve a accurate results of simulations, so the manufacturing processes such as ion implantation, diffusion, thermal oxidation,

epitaxial accretion and others should be properly modeled. The scope of following paragraphs will be restricted only to processes of ion implantation and diffusion of

impurities in volume of semiconductor substrate. The resulting profiles of these processes are often modeled by Gaussian function

G(x) = ae
−

(x −b)2

2c2 ,
( 8.1B.15 )

where x is the spatial coordinate, a, b and c are real constants and e is the Euler number. Gaussian function is even (symmetrical according to the y-axis) and has the shape

of the "bell", which represents the distribution of impurities in semiconductors as a result of the locally applied technological process. Then constant a determines the peak

concentration of impurities (height of the "bell"), b the position of application of technological process (coordinate of the "bell" peak) and c is proportional to the diffusion

of impurities in the substrate (width of the "bell"). In (8.1B.5), we have introduced a fixed charge concentration C, which corresponds to the distribution of impurities in

semiconductors. Lets assume that ND and NA indicate the peak concentration of acceptors and donors (corresponding to a coefficient), then the one dimensional (1D) P-N

junction problem in general can be formulated as

C = NDi + NDG(xD, bD, cD) − NAG(xA , bA , cA), ( 8.1B.16 )

where NDi is the initial substrate concentration of impurities, which is usually slightly doped by donors, so is type of N. Lets consider the P-N diode reduced to 1D problem

with a total length L = 8 µm made of the silicon substrate with a low initial concentration of donors NDi = 1021 m-3 and the highly doped regions on opposite ends of the

substrate with concentrations of donors consisting ND = 1023 m-3 and NA = 1023 m-3. The width of the P-N transition is LJ = 1 µm. Resulting doping profile is shown in
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fig. 8.1B.1 and is expressed by the following formula

C = NDi + NDe
(−

(x −0)2

2c2 )
− N

A
e

(−
(x − L)2

2c2 )
,

( 8.1B.17 )

where c is expressed by the desired width of the transition as

c =
LJ

2ln
⎛⎝N

A
/NDi

⎞⎠√
.

( 8.1B.18 )

Fig. 8.1B.1 Example of P-N diode doping profile

2.2     Carriers Mobility

The mobility µ is an important quantity which represents a relationship between carriers drift velocity v and electric field E by the formula

v = µE. ( 8.1B.19 )

The movement of carriers in semiconductors is disturbed by collisions with the crystal lattice, impurities and defects, therefore, track of the carriers movement between

two points is not a straight line. In order of easily imaginable description this phenomenon was introduced the mobility, which is modeled with respect to the mechanisms

that affect the carriers collision. These mechanisms may be caused by

atomic lattice material

ionized impurities

carrier-carrier collisions

neutral impurities

intensity of the electric field

Often can be used the value µn, p
300  specified for the given material at a temperature of 300K, but a correct model of solid-state structure involve detailed modeling of the

carriers mobility because it captures the physical phenomena that have a major effect on the properties of semiconductor devices. In the following paragraphs we focus on

the most common models of mobility.

Dependence of Carrier Mobility on Lattice Temperature

One of the fundamental mechanisms affecting the collisions are vibrations of  atoms in a  lattice of pure crystal semiconductors.  The intensity of  these vibrations is

proportional to the lattice temperature. Modeling of this phenomenon by empirical relations (8.1B.20) is based on the experimentally measured values of carrier mobility at

different temperatures, from which the values of the coefficients αn and αp are determined.

µn
L = µn

300⎛⎝ T
300K

⎞⎠
−αn

( 8.1B.20a )

µp
L = µp

300⎛⎝ T
300K

⎞⎠
−αp

( 8.1B.20b )

The mobility of carriers dependence on the temperature in the crystal Si and GaAs are shown in figure 8.1B.2. Typical values of mobility and the coefficients are shown in

tab. 8.1B.2.
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a) crystal Si b) crystal GaAs

Fig. 8.1B.2 The mobility of carriers dependence on the temperature in the semiconductor crystal

Tab. 8.1B.2 Values of mobility and the coefficients of temperature

dependence [44].

Si GaAs

µn
300  [m2V-1s-1] 0,14 0,8

µp
300  [ m2V-1s-1] 0,4 0,4

αn [] 2,2 1

αp [] 2,2 2,1

Dependence of Mobility on Concentration of Ionized Impurities

Ionized impurities are mainly donor and acceptor impurities. Relations describing the effect of their concentration on the mobility of carriers are defined by the means of

the total concentration of ionized impurities CI. This is defined as the sum of a fixed charge concentration of m kinds of ionized impurities, multiplied by the absolute value

of their normalized charge Z.

CI = ∑
i = 1

m
||Zi || ⋅Ci. ( 8.1B.21 )

For the usual impurities is ||Z || = 1. However, in some applications, such as solar cells doped with a zinc, can be double-ionized acceptors, which corresponds to the value of

||Z|| = 2. Empirical relations (8.1B.22) describe the influence of the concentration of impurities on the carriers mobility in the volume of Si, while the influence of lattice

temperature is also included. Figure 8.1B.3 shows the plot of those relations at temperatures 300K and 400K.

µn
LI = 0.0088

⎛⎝ T
300K

⎞⎠
−0,57

+
0.1252( T

300K)−2.33

1 +
CI

1.432⋅1023( T
300K)2.546

( 8.1B.22a )

µp
LI = 0.00543

⎛⎝ T
300K

⎞⎠
−0,57

+
0.0407( T

300K )−2.33

1+
CI

2.67⋅1023( T
300K )2.546

( 8.1B.22b )
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a) electron mobility b) hole mobility

Fig. 8.1B.3 Influence of the impurities concentration on the carriers mobility in the volume of Si at temperatures 300K and 400K

Dependence of Carrier Mobility on Electric Field Intensity

Another important phenomenon that results in a change in carrier mobility is the drift velocity saturation at high electric fields. For Si it is possible to use the following

empirical formula

µn, p
LE =

µn, p
L

⎛

⎝
⎜⎜1+(

En, p

En, p
crit )

βn, p ⎞

⎠
⎟⎟

1/ βn, p
,

( 8.1B.23 )

where En,p  denotes the magnitude of the electric field component in the direction of the current density vector. Threshold En, p
crit  and coefficients βn, are chosen to fit

experimental data. These coefficients and their dependence on temperature are formulated as

En
crit = 857 ⋅ 103⎛⎝ T

300K
⎞⎠

1.55
, ( 8.1B.24a )

Ep
crit = 1800 ⋅ 103⎛⎝ T

300K
⎞⎠

1.68
, ( 8.1B.24b )

βn = 1.11
⎛⎝ T

300K
⎞⎠

0.66
, ( 8.1B.25a )

βp = 1.21
⎛⎝ T

300K
⎞⎠

0.17
. ( 8.1B.25b )

Figure 8.1B.4 depicted the evaluated above relationships. Fig. 8.1B.5 shows the effect of drift velocity saturation of carriers due to the magnitude of electric field intensity

which is given by

vn, p = µn, p
LE En, p . ( 8.1B.26 )

a) electron mobility b) hole mobility

Fig. 8.1B.4 Influence of the electric field magnitude on the carriers mobility in the volume of Si at temperatures 300K and 400K
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a) electron drift velocity b) hole drift velocity

Fig. 8.1B.5 influence of the electric field magnitude on the carriers drift velocity in the volume of Si at temperatures 300K and 400K

For electrons in GaAs this phenomenon can be modeled by the following formula

µn
LE =

µn
L +vsat

(En)3

(En
crit )4

1 +( En

En
crit )

4
, ( 8.1B.27 )

where En denotes the magnitude of the electric field component in the direction of the vector current density En
crit  is its critical value and vsat is a temperature dependent

saturation velocity of electrons, which is modeled by

vsat =
vsat

300

(1− An)+ An( T
300K)

, ( 8.1B.28 )

where the coefficient An is determined experimentally. Typical values of coefficients are En
crit  = 400×103 Vm-1, An = 0,56 a vsat

300  = 72×103 ms-1. In fig. 8.1B.6 is depicted

the dependence of mobility and drift velocity of electrons on the magnitude of the electric field intensity. When we realize that by (8.1B.12) is the drift velocity proportional

to the current size, we can observe the negative differential resistance as a result of Gunn's effect which is the key phenomenon of the many active microwave devices

made of GaAs.

a) electron drift velocity b) hole drift velocity

Fig. 8.1B.6 Influence of the electric field magnitude on the carriers drift velocity in the volume of GaAs at temperatures 300K and 400K

2.3     Generation and Recombination of Carriers

In the previous paragraphs was mentioned function R,  which describes the rate of generation and recombination of electrons and holes.  Consider a uniformly doped

semiconductor, which is in thermal equilibrium, ie. the processes of generation and recombination of excited thermal energies are in dynamic equilibrium. For this situation

we can define the equilibrium concentration of electrons n0 and p0 holes, which are bound by the following formula

n0 p0 = ni
2 , ( 8.1B.29 )

where ni is the intrinsic concentration. If semiconductor is excited by external stimulus, the balance between generation and recombination processes will be unbalanced and

the concentration of electrons and holes will be disturbed from their equilibrium values.  In the continuity equation (8.1B.11) is this effect expressed by R  function.
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Fig. 8.1B.7 2D geometry of planar

MOSFET transistor [44]

Depending on the physical phenomenon which is the cause of generation and recombination event of carriers, we distinguish

RSRH (Shockley-Read-Hall) transitions of phonons

ROPT photon transitions

RSURF surface phenomena

RAU triple Auger transitions

RII impact ionization.

Individual formulations can be combined by simple addition R = RSRH + ROPT + RAU + RSURF + RII.

The dominant mechanism is Shockley-Read-Hall recombination and generation, which is modeled as a trap between valence and conductive band of semiconductor. The

resulting function has the following form

RSRH =
np−ni

2

τp (n +n1)+τn (p+ p1)
, ( 8.1B.30 )

where τn and τp are carriers lifetime, n1 and p1 are the concentrations defined by trap energy level. If the level of trap is in the middle of the forbidden zone, concentrations

are equal intrinsic, p1 = n1 = ni.

3        Analysis of Basic Equations and Boundary Conditions

In the first section was given a set of basic equations (8.1B.6), (8.1B.11) and (8.1B.13). It is important to note that in the current densities in the relations (8.1B.13) have

been omitted the currents caused by a narrowing of  the forbidden zone and temperature gradient,  because their effect is considered to be negligible.  However,  the

(8.1B.13) may become incorrect if any of these phenomenon become significant.

Using (8.1B.6) and by substituting the current density equations (8.1B.13) into the continuity equation (8.1B.11) we obtain a system of three partial differential equations

(8.1B.31) with variablesΨ, n and p.

∇ ⋅ (∇ψ) −
q

ε (n − p − C) = 0 ( 8.1B.31a )

∇ ⋅ (Dn∇n − nµn∇ψ) − R =
∂n
∂ t

( 8.1B.31b )

∇ ⋅ (Dp∇ p + pµp∇ψ) − R =
∂ p

∂ t
( 8.1B.31c )

For mathematical analysis we need to know the initial estimation of Ψ, n and p and boundary conditions in analyzed domain. The bounded domain D is generally three-

dimensional, like practically all semiconductor structures. However, in many cases, this domain can be considered as two-dimensional, or even one-dimensional, which

make the analyzed the problem significantly easier.

Lets ∂D denotes partial boundary of domain D. It can be divided into two parts

∂ D = ∂ Dp∪∂ Da ( 8.1B.32 )

where ∂Dp denotes those parts of the boundaries that are real, physical boundaries, such as contacts and interfaces. ∂Da indicates artificial interfaces that are introducing,

for example, to exclusion of sub-structure on the large substrate or to the separation of neighboring devices on a common substrate.

The illustrative description of idealized 2D geometry of MOS transistor is depicted in fig.  8.1B.7.  The entire

domain is  represented by polygon A-B-C-D-E-F-G-H-B.  Equation (8.1B.31) is  valid  only  in  the subdomain

A-B-E-F-G-H-B.  Insulator  B-C-D-E-B  can be  characterized either  by  the  Laplace  equation  for  electrostatic

potential (8.1B.33) or by assumption of absence of charge carriers (8.1B.34).

∇ ⋅∇(Ψ) = 0 ( 8.1B.33 )

n = p = C = 0 ( 8.1B.34 )

However, the use of these equations makes it impossible to determine the current passing through the base and

the influence of the charge on insulating oxide layer.

The boundaries A-B,  E-F,  C-D and B-E can be considered as physical boundaries representing three contacts

and interface between the semiconductor and insulator. Boundaries A-H, B-C, D-E, F-G and G-H are considered

as artificial boundaries.

Physical boundaries can be divided into three categories.

∂ DP = ∂ DO∪∂ DS∪∂ DI ( 8.1B.34 )

where ∂DO indicate the ohmic contact, ∂DS denotes Schottky contact and ∂DI is the insulator interface.

3.1     Ohmic Contact

The simplest boundary condition for the ohmic contact is the Dirichlet boundary condition for the electrostatic potential
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ψ(t) − ψb − ψD(t) = 0, ( 8.1B.36 )

where ΨD(t) denotes the external applied voltage and Ψb denotes a built-in potential directly related to impurities in the volume of semiconductor and can be expressed by

the following formula

ψb =
kT
q ar sinh

⎛
⎝⎜ C

2ni

⎞
⎠⎟. ( 8.1B.37 )

If the semiconductor is doped only by donors or acceptors, we can use the simplified relations

ND > > NA → ψb ≅
kT
q ln

⎛
⎝⎜

ND
2ni

⎞
⎠⎟, ( 8.1B.38a )

NA > > ND → ψb ≅
kT
q ln

⎛
⎝⎜

NA
2ni

⎞
⎠⎟. ( 8.1B.38b )

Furthermore, we consider boundary conditions for carriers concentration. If we consider the thermal balance (8.1B.28) and the absence of space charge on the ohmic

contact, the following relations are valid.

np − ni
2 = 0 ( 8.1B.39 )

n − p − C = 0 ( 8.1B.40 )

These two equations can be expressed as Dirichlet boundary conditions for electrons (8.1B.41a) and holes (8.1B.41b)

n =
C 2 +4ni

2√ +C

2
,

( 8.1B.41a )

p =
C 2 +4ni

2√ −C

2
.

( 8.1B.41b )

3.2     Schottky Contact

The physical description of Shottkyho contact is not trivial, so for the purpose of device simulation is used a very simplified model. For the electrostatic potential can write

the Dirichlet boundary condition

ψ(t) − ψb − ψs − ψD(t) = 0, ( 8.1B.42 )

where ΨD(t) denotes the external applied voltage and Ψs is the size of Schottky barrier, which is characterized by kind of metal and semiconductor in junction. Ψb again

denotes a built-in potential. Boundary condition for the concentration of carriers is based on the current density flowing through the contact. By using the theory of thermal

emission and diffusion can be derived the following boundary conditions for the reverse polarized contact

Jn n = − qun

⎛

⎝
⎜⎜n −

C 2 +4ni
2√ +C

2

⎞

⎠
⎟⎟, ( 8.1B.43a )

Jp n = − qup

⎛

⎝
⎜⎜p −

C2 +4ni
2√ −C

2

⎞

⎠
⎟⎟, ( 8.1B.43b )

where n denotes the normal vector perpendicular to ∂D and un,p is the speed of thermal recombination.

3.3     Semiconductor Insulator Interface

Another category consists of the interface between semiconductor and insulating material. At this interface must be valid Gauß's law

εsem
∂ψ

∂n

|
||sem

− εins
∂ψ

∂n

|
||ins

= Qint , ( 8.1B.44 )

where εsem and εins indicates the permittivity of semiconductor and insulator.  Qint is the charge on the interface.  For thin layers of insulators such as oxide,  can be

neglected the component of electric field in an insulator perpendicular to the interface, thus simplifying to

εsem
∂ψ

∂n

|
||sem

= Qint . ( 8.1B.45 )

By neglecting of the charge on the interface Qin can be the previous condition reduced to the Neumann condition for the electrostatic potential

∂ψ

∂n
= 0. ( 8.1B.46 )

For carriers, the current component perpendicular to the interface must equal the rate of surface recombination R
SURF

Jn n = − qRSURF , ( 8.1B.47a )

Jp n = qRSURF . ( 8.1B.47b )

Very often is the surface recombination neglected, so we get simpler conditions

Jn n = 0, ( 8.1B.48a )

Jp n = 0. ( 8.1B.48b )

3.4     Artificial Interface

The last case is the artificial interfaces. Here we assume either the boundary condition (8.1B.49a) (8.1B.49b) and (8.1B.49c) to ensure that the domain is enclosed or

specific values for the electrostatic potential and carrier concentration of the external sources.
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∂ψ

∂n
= 0 ( 8.1B.49a )

∂n
∂n

= 0 ( 8.1B.49b )

∂ p

∂n
= 0 ( 8.1B.49c )
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